

SCIENCE AND FOR EDUCATION FOR SUSSIAINABLE LIFE

Importance of scalability of computer vision models within the livestock sector: how to achieve a painless transition from research into practice

Dr. Oleksiy "Alex" Guzhva, Assistant Professor, Dept. of Biosystems and Technology, SLU, Sweden

Pyzer-Knapp, E.O., Pitera, J.W., Staar, P.W.J. et al. Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Comput Mater 8, 84 (2022).

Innovation process:

□ New tech/AI-model

U We have a market, let's sell!

□ First prototype

□ Integration and compatibility

Cybersecurity and GDPR

Laws and E-Governance

□ Tough production environment

□ Price or value?

□ End-User perspective?

So, where and how do we start?

Research-Only

Industrial R&D

Low/High TRL

ABM/PLF

One/Multi-Species

Behavior/Health/Production

Data Availability Model Transfer Learning Expected Outcome Resources

Real-World Performance

Interpretability Integration Potential E-Governance Public Opinion Digital 3R Security

What can we see with help from

Computer Vision/AI?

Predictions

Living organisms are ...

... individually different

Important: to come as close to an individual animal as possible!

Since a large part of machine learning is feeding data to an algorithm that performs heavy computations iteratively, the choice of hardware also plays a significant role in scalability.

Scaling activities for computations in machine learning (specifically deep learning) should be concerned about executing matrix multiplications as fast as possible with less power consumption (because of cost!).

Tools for development

As well as their cost and efficiency...

SLU

Normalized GPU Performance

Aren't we being ridiculous?

NVIDIA H100 Tensor Core GPU

Unprecedented performance, scalability, and security for every data center.

Learn More

An order-of-magnitude leap for accelerated computing.

Tap into unprecedented performance, scalability, and security for every workload with the NVIDIA H100 Tensor Core GPU. With NVIDIA[®] NVLink[®] Switch System, up to 256 H100s can be connected to accelerate exascale workloads, along with a dedicated Transformer Engine to solve trillion-parameter language models. H100's combined technology innovations can speed up large language models by an incredible 30X over the previous generation to deliver industry-leading conversational AI.

Accelerator Model	K80	P100	P100	P100	V100	V100	A100	A100	A100	H100	HI00
Bus	PCI-E 3.0	PCI-E 3.0	PCI-E 3.0	SXM	PCI-E 3.0	SXM2/3	PCI-E 4.0	SXM4	SXM4	PCI-E 5.0	SXM5
GPU	2 * GK210B	GP100	GP100	GP100	GV100	GV100	GA100	GA100	GA100	GH100	GH100
FP32 Cores	4,992	3,584	3,584	3,584	5,120	5,120	6,912	6,912	6,912	14,592	16,896
FP64 Cores	-	1,792	1,792	1,792	2,560	2,560	3,456	3,456	3,456	7,296	8,448
Tensor Cores	-	-	-	-	640	640	432	432	432	456	528
RT Cores	4	+	-	+	-	-	-		-	-	-
Base Core Clock Speed	560 MHz	1,126 MHz	1,126 MHz	1,328 MHz	937 MHz	1,327 MHz	765 MHz	1,095 MHz	1,095 MHz	600 MHz	1,095 MHz
GPU Boost Clock Speed	875 MHz	1,303 MHz	1,303 MHz	1,480 MHz	1,312 MHz	1,530 MHz	1,410 MHz	1,410 MHz	1,410 MHz	1,698 MHz	1,833 MHz
SMs	2 * 13	56	56	56	80	80	108	108	108	114	132
Peak FP8 Tensor Core FP16 or FP32 ACC, Teraflops	-	-	-		-	-	-		-	1,600/3,200	2,000/4,000
Peak FP16 Tensor Core FP16 ACC, Teraflops	-	-	4		112.0	125.0	312/624	312/624	312/624	800/1,600	1,000/2,000
Peak FP16 Tensor Core FP32 ACC, Teraflops	-				112.0	125.0	312/624	312/624	312/624	800/1,600	1,000/2,000
Peak BF16 Tensor Core FP32 ACC, Teraflops	-	-	8	-	-	-	312/624	312/624	312/624	800/1,600	1,000/2,000
Peak TF32 Tensor Core, Teraflops	-		-		-	-	156/312	156/312	156/312	400/800	500/1,000
Peak FP64 Tensor Core, Teraflops		-	-	-		-	19.5	19.5	19.5	48.0	60.0
Peak INT8 Tensor Core, Teraops	-		+	1		-	624/1,248	624/1,248	624/1,248	1,600/3,200	2,000/4,000
Peak INT4 Tensor Core, Teraops	-	÷	-	-	-		1,248/2,496	1,248/2,496	1,248/2,496		-
Peak INT8, Teraops	-	-	-	-	56.0	62.8	11 - E - E - E	-	-	-	-
Peak INT4, Teraops	-	1 · · · · · ·			28.0	31.2	-	-			
Peak FP16, Teraflops	-	18.7	18.7	21.2	28.0	31.4	78.0	78.0	78.0	96.0	120.0
Peak BF16, Teraflops	-	18.7	18.7	21.2	14.0	15.6	39.0	39.0	39.0	96.0	120.0
Peak FP32, Teraflops	8.7	9.3	9.3	10.6	14.0	15.7	19.5	19.5	19.5	48.0	60.0
Peak FP64, Teraflops	2.91	4.70	4.70	5.30	7.00	7.80	9.70	9.70	9.70	24.00	30.00
Peak INT32, Teraops	-	1. SA			14.00	15.70	19.50	19.50	19.50	24.00	30.00
Peak RT Core, Teraflops	-	-	-	-	-	-	-	-	-	-	_
GDDR5 or GDDR6/HBM2 Memory	24 GB	12 GB	16 GB	16 GB	16/32 GB	16/32 GB	40 GB	40 GB	80 GB	80 GB	80 GB
Memory Clock Speed	2.5 GHz	703 MHz	703 MHz	703 MHz	877.5 MHz	877.5 MHz	1,215 MHz	1,215 MHz	1,593 MHz	1,658 MHz	2,072 MHz
Memory Bandwidth	480 GB/sec	540 GB/sec	720 GB/sec	720 GB/sec	900 GB/sec	900 GB/sec	1,555 GB/sec	1,555 GB/sec	2,039 GB/sec	2,000 GB/sec	3,000 GB/sec
Power Draw	300 W	250 W	250 W	300 W	250 W	300/350 W	300 W	400 W	400 W	350 W	700 W

Cost of running the same benchmark task on various GPU platforms

*Softlayer does not provide single GPU machines. The cost figures are based on multi GPU training using Keras's suboptimal multi GPU implementation. **LeaderGPU also does not provide single GPU servers. The cost figures are based on training using only one of multiple available GPUs *Hetzner only provides dedicated servers on monthly basis. Figures here reflect hourly prorated costs

Energy is sustainable if it meets the needs of the present without compromising the ability of future generations to meet their own needs...

- Kutscher, Milford & Kreith 2019

RTX 2080 Ti Slowdown vs Power Limit

Power Limit (Watts)

No Power Limit

NVID	IA-SMI 44	0.100	Driver	Version: 44	0.100	CUDA Versio	on: 10.2
GPU Fan		Persi rf Pwr:U		Bus-Id Mei	Disp.A mory-Usage		Uncorr. ECC Compute M.
0		RTX 208 P2 255W	. Off / 260W	00000000:0 10436MiB	9:00.0 Off / 11019MiB	 100%	N/A Default
1 51%		RTX 208 P2 222W		00000000:0 9907MiB	B:00.0 Off / 11019MiB	100%	N/A Default
2 49%		RTX 208 P2 258W		00000000:4 9907MiB	3:00.0 Off / 11019MiB	100%	N/A Default
3 48%		RTX 208 P2 247W		00000000:4 9924MiB	5:00.0 Off / 11016MiB	100%	N/A Default

200W Power Limit

NVIDIA-SMI 440.100 Driver Version: 440.100 CUDA Version: 10.2						
GPU	Name	Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC		
Fan	Temp Perf	Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.		
0	GeForce RT)	208 Off	00000000:09:00.0 Off	N/A		
44%	66C P2	202W / 200W	10436MiB / 11019MiB	100% Default		
1		(208 Off	00000000:0B:00.0 Off	N/A		
43%		196W / 200W	9907MiB / 11019MiB	100% Default		
2	GeForce RTX	(208 Off	00000000:43:00.0 Off	N/A		
43%	66C P2	196W / 200W	9907MiB / 11019MiB	100% Default		
3		(208 Off	00000000:45:00.0 Off	N/A		
42%		190W / 200W	9924MiB / 11016MiB	100% Default		

JETSON NANO RUNS MODERN AI

INVIDIA.

How do we contribute to sustainable AI-development?

Simple models and a lot of data trump more elaborate models based on less data.

More data beats clever algorithms, but better data beats more data.

Peter Norvig

Want to chat about AI? Collaborations? Virtual

coffee?

oleksiy.guzhva@slu.se

'I can't imagine why they ever thought we'd take their jobs away.'

