Practical examples of biomethanation applied research and piloting at Jamk Institute of Bioeconomy

> BioTalks: Utilizing biogenic CO₂ from biogas plants 24.1.2023

> > Dr. Mauno Harju, Project Manager

Institute of Bioeconomy, Jamk University of Applied Sciences

mauno.harju@jamk.fi

In situ -methanation is a CO₂ capturing method

$$CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O$$

BioTalks: Utilizing biogenic CO₂ from biogas plants, Dr. Mauno Harju, mauno.harju@jamk.fi 24.1.2023

Project 1. BIND - Promoting bioinnovation

2018 - 2021

The project called for bioeconomy ideas. From the 73 proposals received, 23 ideas were selected for further work.18 were carried on and 7 of them showed such characteristics that their further development was recommended.

Based on five ideas, the inventors founded four new companies.

One of the start ups was BGC Nordic Oy, who now has a patent on a new design of a biogas chamber.

https://bgcnordic.com/

European Regional Development Fund ERDF <u>https://biotalouskampus.fi/fi/bind/</u> https://www.jamk.fi/fi/tutkimus-ja-kehitys/tki-projektit/bind-bioinnovaatioiden-edistaminen idea challenge #

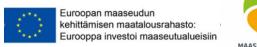
jamk | University of Applied Sciences

Project 2. HABA - Project for resource-efficient production of biomethane

2021 - 2023

The technologies to be piloted include hydrogen enrichment in digestion, productization of carbon dioxide generated in biogas production, the use of a membrane contactor in the separation of methane and carbon dioxide, and the intensification of liquidsolids separation of digestate.

The Bioeconomy Institute of Jamk University of Applied Sciences primarily implements the procurement and operation of a biogas reactor. Hydrogen is fed into the reactor in situ for methanation tests, the effect of which on the amount of biomethane formed is monitored.



Project 3. Methanation on farm - Improving the profitability of farm biogas production by scaling *in situ* methanation from pilot to farm scale

- 1.Experimental development: a. updating the biogas pilot portfolio, b. optimization of digestion and development of digestion control, c. construction of electricity generation and electrolysis equipment for the pilot.
- 2.Calculations on the profitability.
- 3. Planning the scaling to the farm scale.
- 4. Communication and network expansion.

The project will contribute to a green economy in line with the objectives of the The European Agricultural Fund for Rural Development (EAFRD) recovery funds.

The rural innovation group (EIP Group) implementing the project consists of Paavolan Maitotila, BGC Nordic Oy and Jamk University of Applied Sciences, Institute of Bioeconomy

If there is a possible risk of dust or gas explosions in your company, an explosion protection document is also required. It states:

- an assessment of the explosion risks
- a danger zone classification of areas subject to an explosion hazard
- the technical and organisational measures that you have taken, and that have yet to be taken.

The regulation of the **Explosion protection document (EpD)**

The explosion protection document must be in place in accordance with the European Directive 1999/92/EC '*Minimum requirements for the improvement of health protection and safety of workers who may be at risk from explosive atmospheres*'. The directive is now known as ATEX 153. In terms of content, this directive is the same as the old ATEX 137.

https://benelux.bureauveritas.com/en/consultancy/process-safety/explosion-protection-document

Directive 1999/92/EC

• ATEX-153 (formerly ATEX 137) Directive

National binding legislation

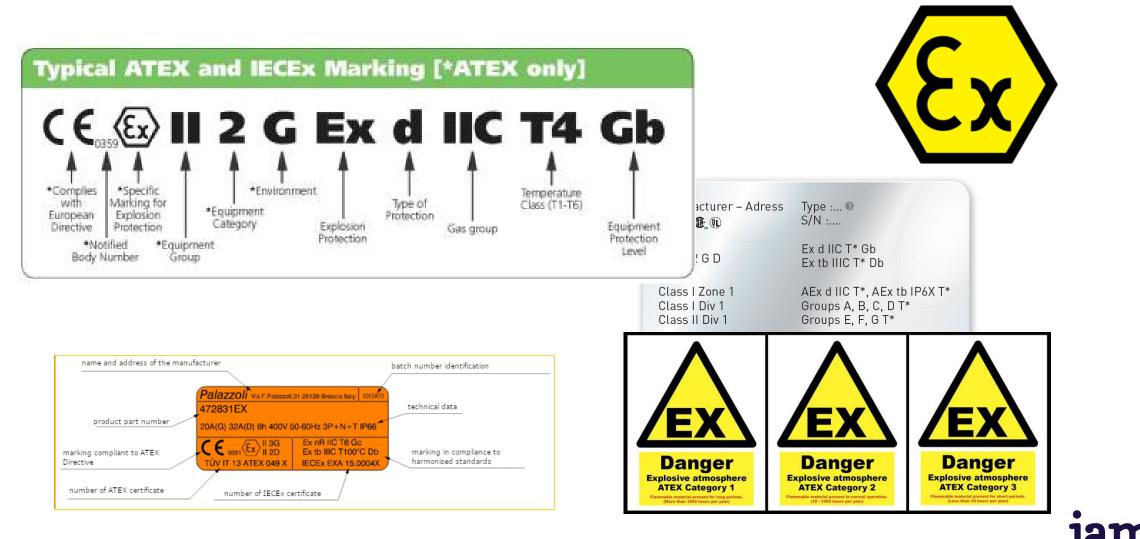
- 576/2003 VnA on the prevention of the risk to workers posed by explosive atmospheres
- 738/2002 Occupational Safety and Health Act
- Regulation (EU) No 685/2015 VnA on the control of the handling and storage of hazardous chemicals
- Regulation (EU) No 856/2012 VnA on safety requirements for the industrial handling and storage of hazardous chemicals
- International SFS-EN IEC 60079 Explosive atmospheres standard series
- National SFS Handbook 59 Classification of potentially explosive atmospheres, flammable liquids and gases

Manufacturer – Adress

II 2 G D

Class | Zone 1 Class | Div 1 Class II Div 1

Type :... 🕑 S/N :....


Ex d IIC T* Gb Ex tb IIIC T* Db

AEx d IIC T*, AEx tb IP6X T* Groups A, B, C, D T* Groups E, F, G T*

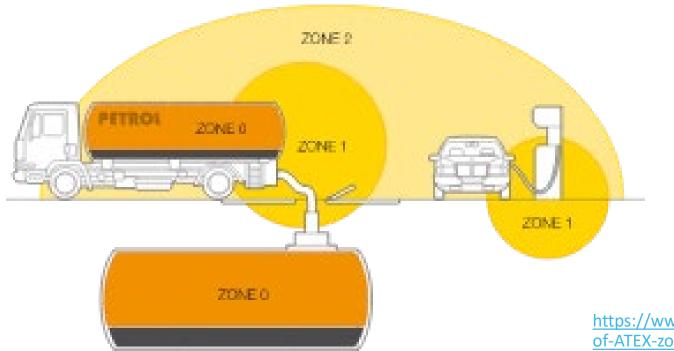
> er sphere ry 3

 * : -40 °C ≤ Ta ≤ +40 °C : T6 and T70 °C
-40 °C ≤ Ta ≤ +60 °C : T5 and T90 °C

LCIE 16 ATEX ABCD X/IECEX INE 16.ABCD X

Classification of ATEX zones

Explosive atmosphere	Gas type combustible substance	Dust type combustible
Present permanently or for long periods (more than 1000 h per year)	ZONE 0	ZONE 20
Present occasionally (more than 10 h and less than 1000 h per year)	ZONE 1	ZONE 21
Present accidentally (less than 10 h per year)	ZONE 2	ZONE 22


<u>https://www.petzl.com/INT/en/Professional/Classification-</u> of-ATEX-zones?ActivityName=Explosive-atmosphere

Classification of ATEX zones

ATEX zoning example:

https://www.petzl.com/INT/en/Professional/Classificationof-ATEX-zones?ActivityName=Explosive-atmosphere

ATEX Product Certification Directive 2014/34/EU

Equipment group I concerns all underground (mining) installations

Equipment group II concerns all other above-ground installations

Equipment group II is divided into 3 gas groups (see Table 2). The main difference is in the MESG (Maximum Experimental Safety Gap) for flameproof encapsulation and the MIE (Minimum Ignition Energy) for intrinsically safe circuits:

Gasgroup	MIE (uJ)	Example
IIA	>200	Methane, Propane, Kerosene
IIB	20-60	Ethylene
IIC	0-20	Hydrogen, Acetylene

Marcogaz, IMPACT OF HYDROGEN ON EXISTING ATEX EQUIPMENT AND ZONES, 2021, https://www.marcogaz.org/

 Furthermore, gas explosion-proof equipment is classified in temperature classes. Equipment classified in a certain temperature class can be used for gases with an ignition temperature higher than the temperature associated with the group (see Table 3).

Temperatur e class	Maximum permissible surface temperature
T1	450 °C
T2	300 °C
Т3	200 °C
T4	135 °C
Τ5	100 °C
Т6	85 °C

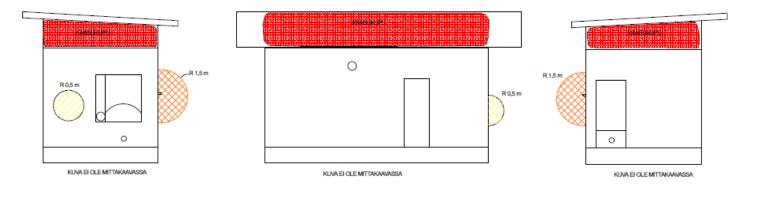
Marcogaz, IMPACT OF HYDROGEN ON EXISTING ATEX EQUIPMENT AND ZONES, 2021, https://www.marcogaz.org/

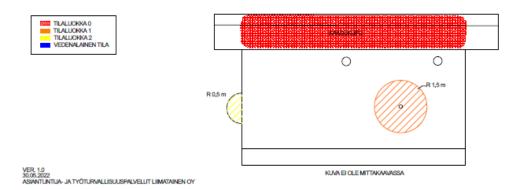
The safety properties of methane and hydrogen relevant for ATEX are (Table 4):

Property	CH ₄	H ₂
Gas group (ATEX)	IIA	IIC
Temperature class	T1	T1
Minimum Ignition Energy (mJ)	0,28	0,017
Ignition temperature (°C)	537 (CH₄) − 670 (L- Gas)	560
LEL-UEL (vol %)	4,4 - 17	4 - 77
Molecular weight (g/mol)	16	2
Relative density	0,55	0,07

Table 4 - Safety properties of natural gas and hydrogen

Marcogaz, IMPACT OF HYDROGEN ON EXISTING ATEX EQUIPMENT AND ZONES, 2021, https://www.marcogaz.org/

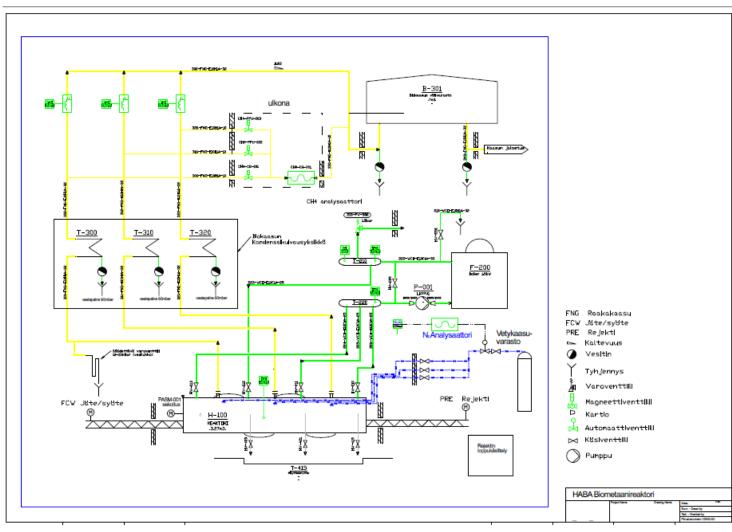

TILALUOKKA 0 TILALUOKKA 1 KUVA EI OLE MITTAKAAVASSA TILALUOKKA 2 VEDENALAINEN TILA Vesilukon purkuaukko -R 1.5 m POISTO ILMA **REJEKTI SYÖTTÖ** REJEKTI POISTO REAKTORI TULOILMA 3000 _R 0,5 m REAKTORITILA VETYLINJAN SYÖTTÖ KOND. prosessilämmitys Putkisto/kaasumittarit TULO 6000 VER. 1.0 30.05.2022 ASIANTUNTIJA- JA TYÖTURVALLISUUSPALVELUT LIIMATAINEN OY


BIOMETAANIREAKTORIN POHJAKUVA, TILALUOKITUS

	1	2 3	4	5	6	7 8	
A		Kammio 1	Kammio 2	Kammio 3			A
в							8
с				• •			
D					.		
E						TILALUOKKA0 TILALUOKKA1 TILALUOKKA1 TILALUOKKA2 VEDENALAINEN TIL	A
						JAMK	
F	1	2 3	4	pirt.	luotu. 8120512-1343	Reaktori 1000-5	6000 ^{A3}

BioTalks: Utilizing biogenic CO₂ from biogas plants, Dr. Mauno Harju, mauno.harju@jamk.fi 24.1.2023

Leito	E	Biomentaanireaktori			Leftor: Biomenteentreektori														
																	okka		
Pääst	ölähde		Palava alne 1				Imanvalhto												
	Kuwau:	Sijainti	tarkennus	Päästö- luokka	P\$8xtő- nopeus kg/x [W _g]	Suhteellinen päästö määrä m ² /s (Q _e)	Suhteellinen tiheys kassu/lima	Vilte	Käyttö- lämpötila "C	Kilyttö peine kPa	Olo- muoto (G; L; LG; 5)	Tyyppi (N; AG; AL)	Laimenemine n	Käytettävyys	Tile- luokke 0-1-2	Laajuus pystyssä (m)	Lasjuus vaska- tasossa (m)	Vite	Lisitiedot ja huomeutukset
1.	Biokassureaktorin kassun ulostulovhde	Kammio 1	Putklyhde 1 1/4" G	2	5,955-03	0.21	0.5540	1	37	0.5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
2.	Blokassureaktorin kassun ulostuloyhde	Kammio 2	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
3.	Blokassureaktorin kassun ulostuloyhde	Kammio 3	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
4.	Vetylinjan syöttö kammio 1	Reaktorin loppupää	heimipuristellitos 6 mm	2	2,105-03	0,79	0,0710	2	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
5.	Vetylinjan syöttö kammio 2	Reaktorin loppupää	heimipuristellitos 6 mm	2	2,105-03	0,79	0,0710	2	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
6.	Vetylinjan syöttö kammio 3	Reaktorin loppupää	heimipuristellitos 6 mm	2	2,105-03	0,79	0,0710	2	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
7.	Vetylinjan läpivlenti kammio 1	Reaktorin loppupää	heimipuristellitos 6 mm	2	2,105-03	0,79	0,0710	2	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
۵.	Vetylinjan läpivienti kammio 2	Reaktorin loppupää	heimipuristellitos 6 mm	2	2,105-03	0,79	0,0710	2	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
9.	Vetylinjan läpivlenti kammio 3	Reaktorin loppupää	helmipuristellitos 6 mm	2	2,105-03	0,79	0,0710	2	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
10.	Vetylinjan putkisto kammio 1	ulkona	heimipuristellitos 6 mm	2	2,105-03	0,79	0,0710	2	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				ULKONA
11.	Vetylinjan putkisto kammio 2	ulkona	heimipuristellitos 6 mm	2	2,105-03	0,79	0,0710	2	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				ULKONA
12.	Vetylinjan putkisto kammio 3	ulkona	heimipuristellitos 6 mm	2	2,105-03	0,79	0,0710	2	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				ULKONA
13.	Reaktorin pinnenmitteus	kammioiden 1 ja 2 välissä	Putklyhde 1,5° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
14.	Vesilukon putkistoyhde	tiloja erottavalla seinällä	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
15.	Vesilukon putkistoyhde	tiloja erottavalla seinällä	Putklyhde 1 1/4* G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
16.	Vesilukon putkistoyhde	tiloje erottavalla seinällä	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG TYYD	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
17.	Vesilukon purksusaukko	ulkons	purkausaukko 1 1/4"	1	5,958-03	0,21	0,5540	1	37	0,5	G	N	TYPEYTTÄVÄ	KOHTALAINEN	1				ULKONA
18.	Kassuveraston ulostulo	katossa kammio 1 yläpuolella	letkullitos 6 mm	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
19.	Keesuveraston ulostulo	katossa kammio 1 yläpuolella	letkulitos 6 mm	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
20.	Keesuvereston ulostulo	katossa kammio 1 yläpuolella	letkullitos 6 mm	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
21.	Kaasuputkistoniiitos 1	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4* G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
22.	Kaasuputkistonilitos 2	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
23.	Keesuputkistoniiitos 3	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
24.	Kaasuputkistonilitos 4	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4" G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
25.	Kaasuputkistonilitos 5	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
26.	Keesuputkistoniiitos 6	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
27.	Kaasuputkistonilitos 7	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
26.	Kaasuputkistonilitos 8	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
29.	Kaasuputkistoniiitos 9	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	37 0,5 G		AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
30.	Kaasuputkistonilitos 30	reaktoria ympärölvässä tilassa	Putklyhde 1 1/4° G	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
31.	Kondessikulveusyksikön letkuliitos 1	reaktoritila, jääkaappi	letkulitos 6 mm	2	5,958-03	0,21	0,5540	1	37	37 0,5 G 37 0,5 G 37 0,5 G		AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
32.	Kondessikulveusyksikön letkuliitos 2	reaktoritila, jääkaappi	letkulitos 6 mm	2	5,958-03	0,21	0,5540	1	37			AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
33.	Kondessikulveusyksikön letkuliitos 3	reaktoritila, jääkaappi	letkulitos 6 mm	2	5,958-03	0,21	0,5540	1	37			AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
34.	Kondessikulveusyksikön letkuliitos 4	reaktoritila, jääkaappi	letkuliitos 6 mm	2	5,958-03	0,21	0,5540	1	37	37 0,5 G		AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
35.	Kondessikulveusyksikön letkuliitos 5	reaktoritila, jääkaappi	letkuliitas 6 mm	2	5,958-03	0,21	0,5540	1	37	0,5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA
36.	Kondessikulveusyksikön letkuliitos 6	reaktoritile, jääkaappi	letkullitos 6 mm	2	5,958-03	0.21	0.5540	1	37	0.5	G	AG	TYYDYTTÄVÄ	KOHTALAINEN	2				KOKOTILA



BioTalks: Utilizing biogenic CO₂ from biogas plants, Dr. Mauno Harju, mauno.harju@jamk.fi 24.1.2023

Lait	05:		Biomentaa	nireaktori																			
Sytt	yvä aine						Haihtuvuus			LFL/UFL						EX ominaisuus							
	Nic	mi:	Cas numero:	Prosessi pitoisuus %	Kaave:	Moolimassa (kg/kmol)	Suhteellinen tiheys kaasu/ilma	Tiheys kg/m3	Henryn Iain vakio atm m³/mol 25°C	Polytrooppinen indeksi adiabaattisessa laajenemisessa y	ltsesyttymis- lämpötila °C	Luokitus/ Turvalauseke	Kiehumisp iste *C	Höyrynpaine 20 °C kPa	LFL TIL (%)	kg/m²	ppm	UFL TII (%)	kg/m²	ppm	Laite- ryhmä	Lämpötila- luokka	Lisätiedot ja huomautukset
	1 Biometaa	ani	74-82-8	60%	сн.	16,04	0,554	0,73	0,658	1,3	595	Palava kaasu (F+) H220	-162		4,0%	0,0175	26280	17,0%	0,0745	111690	IIA	T1	
	2 Vety		1333-74-0	100 %	Ha	2,0	0,07099	0,08671		1,41		Palava kaasu (F+) H221	-253		4,0%	0,0035	41274	75,6 %	0,0656	780078	ю	T1	
	3																						
	4																						
\vdash	5																			<u> </u>			
\vdash	6					L														<u> </u>			
⊢						L											—			—		L	
\vdash						L														L			
⊢					<u> </u>	L							l							—		L	
⊢					<u> </u>															<u> </u>		<u> </u>	
\vdash						<u> </u>														 		<u> </u>	
\vdash						l														<u> </u>			
\vdash	+																			<u> </u>			
\vdash	+					l														<u> </u>			

Key words to the remaining time of the projects

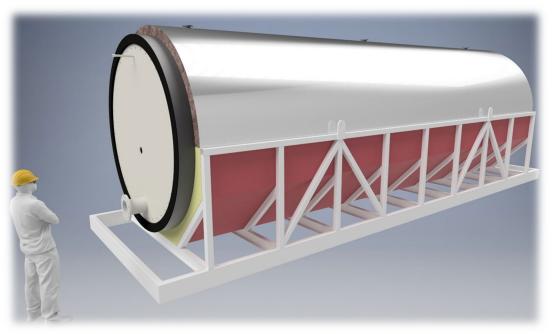
- Automation development
- Remote control
- Alkalinity management and monitoring online
- Contributing the education and training of technical and administrative personnel

Biogas pilot at Jamk Tarvaala campus Outdated

BioTalks: Utilizing biogenic CO₂ from biogas plants, Dr. Mauno Harju, mauno.harju@jamk.fi 24.1.2023

Biogas reactor for new solutions BGCNordic Oy

Precise controllability of the process allows you to run according to the optimum temperatures of anaerobic digestion.


Can implement a 2-step process with a single reactor in a plug flow process.

Streamlining the process and utilization of active volume.

Smaller reactor volume -> lower heat loss and lower investment cost.

The solids content in the process averages about 23%.

The plant is supplied as mobile units, and no separate fixed buildings are built, which can significantly reduce investment risk.

