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Abstract

Never before has machine learning been characterised by such innovative waves of technology. At the same time,
the rise of low-budget single-board microcontrollers allows service providers to meet privacy, low latency and energy
efficiency requirements by deploying artificial intelligence on the edge. Increasing computing capabilities of these tiny
smart devices makes it possible to deploy machine learning models not only for inference but also for training. In this
study, we focus on implementation and evaluation of unsupervised machine learning models which can be deployed
and trained on tiny low-power long-range network enabled devices for anomaly detection. First, we study various
traditional and neural network based machine learning algorithms which can be employed under low computing
and memory resource constraints. Next, we evaluate these algorithms in terms of accuracy and search for their
optimal hyperparameter configurations. Finally, several of the most accurate machine learning algorithms found are
implemented on multiple modern microcontrollers and evaluated in terms of training latency, inference rate and power
consumption.
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1. Introduction

Healthcare is one of the most extensive factors that need to be efficiently managed for the development of any
country, as it is Artificial intelligence (AI) and machine learning (ML) are revolutionising almost every industry with
a seemingly endless list of applications ranging from object recognition in autonomous vehicles [1] to helping doctors
detect and diagnose diseases [2]. At the same time, the recent progress in development of low-budget sensors and
single-board computers has enabled deploying AI on the edge which allows service providers to increase availability
of their ML-driven services and applications as well as deliver lower latency, more secure data privacy and better
energy efficiency. Furthermore, increasing computing and connectivity capabilities of modern microcontrollers has
made it possible to deploy tiny machine learning (tinyML) models not only for inference but also for training which
opens new possibilities as well as poses new challenges when deploying AI/ML applications on the edge [3, 4].

Modern microcontrollers are often equipped with integrated low-power radio transceivers for wireless connectiv-
ity. As a rule, smart devices used in an application transmit the data collected on the edge to a gateway where this data
is aggregated and sent via a broadband network connection to a cloud platform for storage and/or further processing
[5]. There are several wireless connectivity protocols that often used in such tinyML applications, the most popular
of which include unlicensed WiFi and low-power wide-area-networking (LPWAN) via LoRa or Sigfox, as well as
licensed cellular radio such as LTE for machines (LTE-M) and narrow band (NB) internet-of-things (IoT). In our
research, we rely on microcontrollers that utilise LPWAN over LoRa. Such microcontrollers are able to communicate
without an interruption at a distance of 15-30 kilometres in flat rural areas [6] and 2-5 kilometres in urban environ-
ments [7]. LoRaWAN does not require big amounts of energy, therefore the batteries of the sensors and single-board
computers that employ this communication technology can last for years before they run out [8]. Furthermore, LoRa
networks are easy to deploy and use due to its relatively simple architecture. Finally, LoRaWAN can run on unlicensed
radio networks across the globe without need to pay an operator for using the network which reduces the costs of the
deployment. The LoRaWAN features listed above make it an ideal solution for applications that do not require large
data transmissions with low latency such as smart farming [9, 10, 11, 12], indoor localisation [13, 14] and energy
consumption monitoring and optimisation [15].
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Speaking of machine learning methods, they are usually divided into the following three main categories: super-
vised, unsupervised and reinforcement learning. The methods in the first category, i.e. supervised learning, require
large quantities of human-labelled data available for learning functional mappings between the training samples ob-
served and the desired outputs. Unsupervised learning algorithms are designed to infer the underlying structure of the
data under consideration without depending on external resources such as human supervision. Finally, reinforcement
learning (RL) algorithms search for optimal actions in uncertain time-varying environments with the help of intelli-
gently shaped reward signals. Another category of AI/ML algorithms which is worth mentioning is the methods that
follow a deep learning approach. This approach relies on multi-layer neural networks: the first layers as a rule are
used to find compact low-dimensional representations of high-dimensional data whereas later layers are responsible
for achievement of the task given. Deep learning models can be employed in supervised, unsupervised and reinforce-
ment learning algorithms. Many tinyML researchers recognize the power and importance of deep learning and explore
its potential to be deployed even on microcontrollers with limited computing and memory resources [16, 17].

In our research, we focus on unsupervised machine learning models which can be deployed on tiny microcon-
trollers for anomaly detection. As a rule an anomaly detection model is trained in an unsupervised way using the
features of event patterns which represent a certain normal behaviour and then it is used to identify outliers, i.e. the
patterns that deviate significantly from the norms established. Such an approach can be effectively used to detect
never seen before anomalous patterns that may be indicative of a fault in a system [18] or even a deliberate attack
[19]. The approach employed in the majority of the studies devoted to tinyML for anomaly detection involves training
the normal behaviour model offline on a powerful device using a large dataset and then deploying the model trained
on a microcontroller for inference only [20]. However, in certain applications it is sometimes difficult or even impos-
sible to collect such a dataset in advance and therefore the model of normal behaviour in such cases is supposed to
be trained directly on-device [21]. This poses additional constraints on the AI/ML model to be deployed as not only
should it fit into small memory of the target microcontroller while being accurate enough at the inference time, but it
is also supposed to have low latency and power consumption during the training stage [22].

In this study in particular, we concentrate on anomaly detection algorithms that can be trained on LoRaWAN
enabled tiny single-board computers. Our contribution to the field of study is threefold. First, we implement and
evaluate multiple anomaly detection algorithms in terms of accuracy, false positive and true positive rates under the
constraints posed by limited computing and memory resources available at microcontrollers. Second, we compare
the most accurate algorithms in terms of data processing rate and power consumption. Third, we use the best of
the algorithms tested to implement a prototype of the device that can be deployed on the edge to detect anomalous
vibrations and report the detection results over LoRaWAN. The rest of the document is organised as follows. Section 2
surveys the anomaly detection algorithms evaluated as well as briefly describes the approach used for hyperparameter
optimisation in our experiments. Numerical evaluation results are presented in Section 3. Section 4 covers the most
important details of the working prototype implementation using one of the AI/ML models tested. Section 5 concludes
the study and outlines future work.

2. Theoretical background

In this section, we first summarise multiple anomaly detection algorithms that can be deployed on tiny microcon-
trollers for on-device training. After that, we briefly describe how one can conduct a search for optimal hyperparam-
eters for the anomaly detection methods selected.

2.1. Anomaly detection
The anomaly detection methods we implement and test in this study can be divided into three categories: the ones

based on stream clustering, traditional neural networks and deep learning. The first category of methods classifies a
sample as an outlier by measuring its distance from the clusters obtained for the normal data. These clusters can be
found using one of the stream clustering techniques such as scalable k-means++ (SKM) [23], CluStream (CS) [24],
weighted affinity propagation (WAP) [25], weighted c-means (WCM) [26] and many others [27].

ScalableKMeans++ is a lightweight version of popular k-means clustering algorithm: it first samples several
centroid candidates from the data batch based on the distance from the sample to the current cluster centroids; after
that, new cluster centroids are selected by using weighted k-means where the weight for each sample is calculated as
the sum of weights of the samples which are the closest to the corresponding candidates.
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CluStream is the algorithm which relies on creating and updating micro-clusters: each new sample in the data
stream is either assigned to the closest micro-cluster if it does not increase the average distortion of this micro-cluster
significantly, or a new micro-cluster is created using this new sample as its centroid; in the latter case if the number of
micro-clusters exceeds the predefined threshold, two closest micro-clusters merge together; at the end of the clustering
process, centroids of the resulting micro-clusters are clustered using the same weighted k-means.

Weighted affinity propagation is a weighted version of affinity propagation algorithm which uses similarity, avail-
ability and responsibility matrices to pass messages between data points and find the most optimal exemplars; the
weighted version of the algorithm operates in batches and takes into account the weights and distortions calculated
for exemplars obtained at the previous iteration.

Weighted c-means is a version of soft clustering algorithm c-means which similarly calculates the cluster centroids
using the membership matrix each element of which is equal to the probability of the sample belonging to one of the
current clusters; the weight of each centroid is updated with every new data batch using the membership matrix
calculated for the current cluster centroids and new samples stacked together.

The next category of algorithms is based on traditional neural networks trained in an unsupervised way. Two of
the most famous algorithms in this category are self-organising maps (SOM) [28] and growing neural gas (GNG)
[29]. These algorithms suit well for the task of anomaly detection on microcontrollers by design: they compress the
data into a set of representative units in an incremental manner by taking small subsets of data at a time. Such a set
of representative units found for a set of normal samples can further act as the model of normal behaviour to detect
anomalies in the inference stage.

Self-organising map is a competitive learning algorithm that allows one to compress high-dimensional data and
create a network that stores information in such a way that any topological relationships within the dataset are main-
tained; for this purpose, a grid of neurons, each of which is fully-connected to the input layer is formed and updated
during the training.

Growing neural gas is also a topology learning algorithm that models a data space through interconnected units
that stand on the most populated areas of that space; it partitions data into independent networks which reflect the
number of clusters in the dataset.

The last but not the least category of methods is based on the deep learning approach. The deep learning based
methods for anomaly detection tested in this study are several variations of autoencoder including undercomplete
autoencoder (UAE), sparse autoencoder (SAE), denoising autoencoder (DAE) and variational autoencoder (VAE) as
well as deep self-organising map [30] and deep support vector data description (DSVDD) [31].

Autoencoder aims to adjust its parameters in such a way that the output layer is equal to the input one despite the
information bottleneck caused by the hidden layers; the role of the loss function is often played by the reconstruction
error which is the difference between the input and the output; anomalous data point fed to the autoencoder model
results in something that is quite different from the expected output, and therefore a large error value. Autoencoder
variations include but not limited to undercomplete autoencoder whose hidden layer size is much smaller than input
and output ones, sparse auto-encoder which includes in its loss function not only the reconstruction error but also a
special term which grows with the number of units which fire in the bottleneck layer, denoising autoencoder for which
Gaussian noise is added to the inputs during the training, and variational autoencoder, the encoder of which returns a
distribution over the latent space instead of a single point.

Deep self-organising map consists of an autoencoder connected to a self-organising map; the loss function is the
weighted sum of the autoencoder’ reconstruction error and the distance to the map’s best matching unit.

Deep support vector data description learns a neural network transformation from an input space to an output
space that attempts to map most of the data network representations into a hypersphere of minimum volume; mappings
of normal examples fall within, whereas mappings of anomalies fall outside the hypersphere.

2.2. Automatic machine learning

In order to find optimal hyperparameters for the anomaly detection algorithms selected, automated machine learn-
ing (AutoML) approach can be employed. AutoML is usually defined as automating the process of building and
optimising AI/ML models without human assistance [32]. AutoML can automate the process of training and deploy-
ing machine learning models and therefore advance AI/ML research by saving time and resources required for finding
optimal model parameters. Furthermore, it makes state-of-the-art ML models as well as other recent developments in
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AI accessible to non-experts which also accelerates adoption of AI/ML applications in both academia and industry.
As an immediate consequence of the growing demand for AutoML, multiple open-source AutoML frameworks that
are easy to use even for researchers not familiar with AI/ML concepts have recently been developed [33]. Some such
frameworks focus specifically on improving certain models, e.g. Auto-Keras [34] searches for optimal neural network
architectures developed in Tensorflow [35] whereas Auto-Sklearn [36] is designed to work with the models imple-
mented with Scikit-learn Python package [37]. Other frameworks such as Ray [38], Flaml [39] and several others
allow their users to implement and optimise virtually any custom AI/ML model needed.

Most of the AutoML frameworks focus on hyperparameter optimization, namely they aim to minimise the AI/ML
model’s loss function calculated for a validation subset of the target dataset [32]. The methods used for this purpose
may vary from straightforward random and grid search to more advanced techniques such as Bayesian optimization
[40]. The latter allows to reduce computing costs of finding an optimal hyperparameter configuration compared
to the straightforward approaches which involve assessing each individual configuration separately. The Bayesian
optimization approach relies on using a Gaussian process as a surrogate to estimate the expected value and variance
of the loss function given the hyperparameter configuration. A Gaussian process is a probability distribution over
random variable functions such that every finite subset of them follows a multivariate normal distribution. Prior
knowledge about the likelihood of each such function is described by a prior mean function and a positive-definite
kernel. Given a set of observations, namely the hyperparameter combinations tested and the resulting loss values,
the space of possible functions can be reduced via updating the means and variances of the random variables via
Gaussian process regression. Choice of the kernel function may have a significant impact on the correctness of the
regression and therefore it has to be selected properly based on a prior assumption of the target function [41]. Once
the function space has been reduced, using the conditional probability rule, one can estimate the posterior distribution
of the function for a new hyperparameter configuration. Bayesian optimization uses an acquisition function to find
the best hyperparameter configuration for the resulting surrogate Gaussian process function. One popular choice for
such an acquisition function is expected improvement over the best previously observed objective value [42]. While
the Gaussian process has become a standard surrogate for modelling an objective function in Bayesian optimization,
an ensemble of regression trees [43] or even a neural network [44] can also be used for this purpose.

3. Numerical results

In this section, we present the results of the experiments conducted. First, we overview the datasets used to train
anomaly detection models in our experiments and single-board computers on which the models trained are deployed.
Next, we compare the algorithms trained in terms of accuracy, true positive and false positive rates and carry out a
search for optimal hyperparameters for the most accurate methods tested. Finally, we evaluate the algorithms selected
in terms of data processing rate and power consumption.

3.1. Datasets and devices

First, we test the anomaly detection algorithms overviewed in the previous section using two publicly available
benchmark datasets: Outlier Detection DataSets (ODDS) [45] and Skoltech Anomaly Benchmark (SKAB) [46]. We
have picked 20 datasets from each benchmark and limited the maximum number of samples extracted from each
dataset by 20000. If the number of samples exceeds this threshold, 20000 samples are randomly selected from the
samples available. It is also worth mentioning that in ODDS benchmark datasets there is one record per data point,
whereas in SKAB datasets, samples are essentially multivariate time series collected with multiple sensors over some
time period. To extract features from these time series, we use a window of length 32 that moves with step 1. For the
sequence of vectors in each such time window, we calculate its average and use it as the feature vector. All feature
vectors are transformed into range [0, 1] using min-max standardisation.

In addition to that, we have built a testing environment to evaluate the algorithms mentioned in the real use case
scenario. The environment includes an electric motor and several bearings: one is normal whereas others have various
defects. The speed of the motor is controlled by the code running on a microcontroller which randomly samples
the speed values from a certain interval. Another single-board computer with an inertial measurement unit (IMU) is
installed on top of the bearing in order to classify vibrations recorded as either produced by the normal or one of the
defective bearings (see Figure 1b). We have collected several minutes of the IMU data for each of the bearings used.
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Board CPU RAM Flash

Arduino Uno Rev3 AVR, 16 MHz 2 KB 32 KB
Arduino Nano Every megaAVR, 16 MHz 6 KB 48 KB
Arduino Nano 33 IoT ARM Cortex-M0+, 48 MHz 32 KB 256 KB

Arduino Nano 33 BLE Sense ARM Cortex-M4, 64 MHz 256 KB 1024 KB

LoRa-E5 mini ARM Cortex-M4, 48 MHz 64 KB 256 KB

Table 1: Development boards used for anomaly detection algorithm evaluation in the study.

We split the resulting time series using the moving window approach and then apply fast Fourier transform (FFT) to
extract necessary features. As previously, min-max standardisation is employed to scale the feature vectors into the
[0, 1] range.

Speaking of the devices used, we first test the code using several Arduino boards with various microcontrollers.
These include Uno Rev3, Nano Every, Nano 33 IoT and Nano 33 BLE Sense. In addition, we use the LoRa-E5
mini development board equipped with the LoRaWAN connectivity module. The selected board specifications can
be found in Table 1. Since we focus on training anomaly detection algorithms on-device, RAM volume becomes
the most important characteristic that defines the size of the AI/ML model that can be deployed for learning normal
behaviour patterns. The data processing rates are mostly defined by the CPU type.

(a) Boards used in the study. (b) Bearing test environment. (c) Prototype.

Figure 1: Materials used in the research. Fig. (a) shows single-board computers on which AI/ML models have been deployed: (top, from left to
right) Arduino Uno Rev 3, Arduino Nano Every, Arduino Nano 33 IoT, Arduino Nano 33 BLE Sense, and LoRa-E5 mini (bottom). The bearing
test environment used for anomalous vibration detection is shown in Fig. (b). Fig. (c) shows the anomalous vibration detection device prototype
implemented using the LoRa-E5 mini development board.

3.2. Detection accuracy evaluation

To compare the anomaly detection algorithms summarised in Section 2 in terms of accuracy under various board
memory constraints, we implement those algorithms in Python on a PC. To calculate the value of RAM used we
simply count all the variables used in our implementation of the algorithm under consideration and multiply it by 2
bytes for integers and 4 bytes - for floating point numbers. We test the algorithms implemented with several arbitrarily
chosen combinations of hyperparameters and select the best combination for the comparison. The hyperparameters
that affect the model size the most are the number of micro-clusters and batch/reservoir size in the case of stream
clustering based algorithms and the number of layers and the number of neurons in the case of neural network based
ones. If for a certain hyperparameter combination the model does not fit the memory constraints, we adjust the
combination slightly, taking instead the maximum possible values found by decreasing the hyperparameter values
proportionally until they satisfy the memory constraints. This may lead to the situation when the model implemented
for a smaller RAM size sometimes allows one to obtain slightly better accuracy compared to the one calculated for
bigger memory values.
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Algorithm
Board

Arduino Uno
Rev3

Arduino Nano
Every

Arduino Nano 33
IoT

Arduino Nano 33
BLE Sense

LoRa-E5
mini

SKM 80.3738 80.9814 80.9536 80.9536 80.9536
CS 81.8369 82.1188 82.0130 82.0130 82.0130

WAP 80.4589 81.9943 82.3531 82.3531 82.3531
WCM 80.9659 81.5710 81.7194 81.7194 81.7194
SOM 79.0377 79.4520 79.4736 79.4736 79.3984
GNG 78.4472 78.0739 77.9621 77.9621 77.9621
UAE 61.2263 61.2758 61.3074 60.0393 59.9435
SAE 61.9630 62.0459 61.8365 61.2463 61.6242
DAE 62.2700 61.9851 61.7839 61.1683 61.1061
VAE 62.8957 60.4938 62.5878 60.6721 59.3226

DSOM 76.4634 76.5790 77.2092 76.0702 76.8779
DSVDD 79.2322 80.9131 82.0816 81.4344 81.7941

Table 2: Average anomaly detection accuracy (%) calculated for various anomaly detection algorithms implemented under several board memory
constraints using ODDS and SKAB benchmark datasets. The higher the value the better.

For the accuracy evaluation, we split the datasets into training-plus-validation (around 70%) and inference (around
30%) parts and use only normal samples from the former to train the algorithms. We adjust each inference subset
in such a way that it contains an equal number of normal and abnormal samples which allows us to compare the
algorithms in terms of accuracy. For each board and each algorithm, three experiments are carried out with different
random seeds and the average accuracy value is calculated. The results obtained for each benchmark dataset separately
can be found in Tables A.7–A.11 of Appendix Appendix A. The average accuracy values are listed in Table 2.

As one can see, all the algorithms based on stream clustering provide the best results for anomaly detection in
each of the benchmark datasets used: CluStream is the most accurate when the memory size is low whereas weighted
affinity propagation outperforms analogues for bigger RAM values. Speaking of neural network based algorithms,
all the auto-encoder based models tested have resulted in quite low accuracy values compared to other methods.
Interestingly enough, even results of the deep self-organising map model in which auto-encoder is also used are worse
compared to the standard SOM model. The only deep learning model that shows promising results is deep support
vector data description. Thus, based on the accuracy values obtained, we select the following six algorithms for further
evaluation: CS, SKM, WAP, WCM, SOM and DSVDD.

Next, we evaluate the algorithms selected using the data generated in the bearing test environment. The de-
pendence of true positive rate (TPR) on false positive rate (FPR) under LoRaWAN enabled LoRa-E5 mini memory
constraints can be found in Figure 2a. It is worth saying that we are interested the most in the methods that provide
for higher detection rates in case of low FPR values. For this reason, the figure shows the dependence of TPR on
FPR for the cases when the latter is below 5%. In this context, anomaly detection methods based on stream clustering
algorithms, scalable k-means++ and CluStream as well as deep learning based support vector data description show
the most promising results as one can notice from the figure. Dependence of TPR on FPR for memory constraints of
Arduino boards used can be found in Figures B.5a–B.8a of Appendix Appendix B. As one can notice when looking
at the figures, DSVDD becomes less efficient when the RAM size decreases, as this deep learning model requires
more trainable parameters compared to straightforward clustering techniques. Based on the results obtained we select
SKM, CS and DSVDD for further evaluation.

3.3. Hyperparameter optimization

In order to improve the anomaly detection accuracy values achieved by the algorithms selected we use two
lightweight open-source AutoML frameworks Ray and Flaml. The former uses Bayesian optimization to find an
optimal hyperparameter combination whereas the latter relies on some custom optimization algorithm called blended
search, the description of which in detail can be found in study [47]. We conduct the search for the same memory
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constraints and the same bearing test data as previously. For each algorithm and each RAM value, the search is car-
ried out for 100 iterations. In the case of scalable k-means++, the hyperparamters are the number of clusters and
the batch size whereas in the case of CluStream those are the number of clusters and the number of microclusters.
For DSVDD, we search for an optimal two-layer fully-connected network architecture. Figures 2b and B.5b–B.8b
show the improvement of the anomaly detection accuracy over the search iterations for LoRa-E5 and Arduino boards
respectively. The final accuracy values can be found in Table 3.

As one can notice from the table and the figures, all three anomaly detection algorithms tested allow one to reach
similar accuracy values equal to 66.6–66.9%. Furthermore, employing CluStream shows the most promising results
for first three lower RAM values whereas DSVDD slightly outperforms other algorithms in case of the boards with
bigger memory capacity. Speaking of the hyperparameters found, in the case of scalable k-means++, both Ray and
Flaml lead to the same result for all five boards tested: 3 clusters with 4 samples per batch. CluStream hyperparameter
combinations obtained with the AutoML frameworks employed are slightly different between each other, but they
remain the same for each of the boards used and they are respectively 3 clusters, 4 microclusters and 4 clusters, 5
microclusters. For some reason, Flaml with its blended search algorithm fails to find the CluStream solution with 3
clusters which is slightly more accurate as one can notice from Table 3. In the case of DSVDD, the number of neurons
per layer differs depending on the RAM volume available. As one can notice, the DSVDD model found for LoRa-E5
slightly outperforms the one obtained for Arduino Nano 33 BLE Sense even though the latter has four times bigger
RAM capacity. This can be explained by the way we search for optimal network architecture: for each board, we
limit the number of neurons per layer based on memory available on the board. Since, Arduino Nano 33 BLE Sense
has bigger RAM value, the range of possible combinations is much bigger, therefore, it is more challenging for the
AutoML frameworks used to find an optimal hyperparameter combination for this board given the limited number of
search iterations. Thus, we later implement the network architecture found for LoRa-E5 on the Arduino board.

It is also worth mentioning that we have tried to increase the accuracy for SOM and WCM using the AutoML
approach, but have not managed to improve it significantly. Speaking of WAP, the number of clusters in this algorithm
is not defined explicitly, but instead it depends on the preference parameter and the data stream itself. If this parameter
is not selected properly for the data stream analysed, there is a probability that the model becomes too large to fit the
memory during the training. It is therefore very difficult to implement this anomaly detection algorithm on a tiny
microcontroller without knowing the data in advance. For this reason, we have decided to leave this algorithm for
future work when we find a simple way to limit the number of clusters found during the training.

3.4. Data processing rate and power consumption assessment
To evaluate each algorithm’s data processing rate during both the training and the inference stage, we implement

them on each of the boards mentioned. The hyperparameters used for the implementations are the ones that provide
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(a) Dependence of TPR on FPR.
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Figure 2: Anomaly detection algorithm evaluation under LoRa-E5 mini memory constraints using the data generated in the bearing test environ-
ment. Figure 2a shows dependence of true positive rate on false positive rate for various anomaly detection algorithms for low FPR values (below
5%). Results of the experiments on optimal hyperparameter search, namely improvement of the anomaly detection accuracy, using two AutoML
frameworks is shown in Figure 2b.
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AutoML Algorithm
Board

Arduino Uno
Rev3

Arduino Nano
Every

Arduino Nano
33 IoT

Arduino Nano
33 BLE Sense

LoRa-E5
mini

RAY CS 66.6361 66.6361 66.6361 66.6361 66.6361
RAY SKM 66.5111 66.5111 66.5111 66.5111 66.5111
RAY DSVDD 62.0187 64.4496 65.4609 66.8445 66.9417

FLAML CS 66.4194 66.4194 66.4194 66.4194 66.4194
FLAML SKM 66.5111 66.5111 66.5111 66.5111 66.5111
FLAML DSVDD 62.0187 63.6884 64.4052 66.1416 65.9916

Table 3: Average anomaly detection accuracy (%) calculated for various anomaly detection algorithms implemented under several board memory
constraints using the data collected in the bearing test environment. Hyperparameters for the algorithms are found using two AutoML frameworks:
Ray and Flaml. The higher the value the better.

Algorithm
Board

Arduino Uno
Rev3

Arduino Nano
Every

Arduino Nano 33
IoT

Arduino Nano 33
BLE Sense

LoRa-E5
mini

SKM 3 clusters with 4 samples per batch
CS 3 clusters and 4 microclusters

DSVDD network:
12-9-4

network:
12-25-22

network:
12-36-22

network:
12-110-85

network:
12-110-85

Table 4: Hyperparameter combinations found using the AutoML approach for three best anomaly detection algorithms implemented under several
board memory constraints.

the best accuracy values among the combinations found with Ray and Flaml. These combinations can be found in
Table 4.
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(a) Data processing rate (training).
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(b) Data processing rate (inference).

Figure 3: The number of samples that can be processed by each of three algorithms implemented on LoRa E5 during the training and inference
stage. Duration of each stage is one minute.

To calculate the training and the inference data rate of each algorithm implementation, we count the number of
samples which can be processed by the algorithm during a one minute interval. The results obtained for LoRa-E5
can be found in Figure 3. For Arduino boards, the experiment results can be found in Figures B.5c–B.8c and Figures
B.5d–B.8d for the training and the inference stage respectively. In addition, Table 5 shows the average time of data
samples which can be processed in one second during the training and the inference stage on each of the boards
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Stage Algorithm
Board

Arduino Uno
Rev3

Arduino Nano
Every

Arduino Nano
33 IoT

Arduino Nano
33 BLE Sense

LoRa-E5
mini

Training SKM 103.37 106.47 107.19 287.97 381.61
Training CS 48.92 50.01 104.26 483.01 401.92
Training DSVDD 73.15 12.60 20.12 28.45 7.85

Inference SKM 350.18 360.45 555.58 1001.32 706.82
Inference CS 349.67 359.80 555.59 1000.48 705.46
Inference DSVDD 175.06 35.62 60.98 122.61 27.88

Table 5: The number of samples that can be processed in one second by each of three algorithms implemented on the LoRa-E5 board at the training
and inference stage measured in the bearing test environment. The higher the value the better.

tested. As one can see from the results obtained, in most of the cases, stream clustering based anomaly detection
methods provide for significantly faster data processing rate values during both the training and inference stage. The
only exception is that on Arduino Uno the DSVDD model outperforms CluStream during the training stage which
can be explained by the tiny size of the deep learning model deployed in that case. Another interesting observation is
that during the training stage, SKM outperforms CS on the boards with AVR CPUs, whereas in the case of the more
powerful Cortex-M4, the situation is the opposite. During the inference stage, both stream clustering based algorithms
process the same number of samples as expected.
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Figure 4: The energy consumed by each of three algorithms implemented on the LoRa-E5 board during the training and inference stage. Duration
of each stage is one minute.

For the energy efficiency assessment, we perform the same experiments as previously. To evaluate the energy
consumed, we use Joulescope precision direct current energy analyzer to measure the electric current. The voltage
supplied is the same for each board and it is equal to 5 volts. For LoRa-E5 the resulting power values are shown in
Figure 4. For Arduino boards, the results can be seen in Figures B.5e–B.8e and Figures B.5f–B.8f for the training
and the inference stage respectively. As one can notice looking at the figures, the energy values for each board are
almost exactly the same for each of the algorithms tested. It can be explained by the fact that the most of the current
consumption comes from other components of the board such as LEDs and voltage regulators and it does not really
depend on the machine learning algorithm running on its microcontroller. Nevertheless, we can compare the energy
required to process one data sample by each algorithm during the training and the inference stage. These values
in milliwatts can be found in Table 6. As one can see from the results presented, stream clustering based anomaly
detection methods outperform deep learning based DSVDD significantly in terms of energy efficiency.
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Stage Algorithm
Board

Arduino Uno
Rev3

Arduino Nano
Every

Arduino Nano
33 IoT

Arduino Nano
33 BLE Sense

LoRa-E5
mini

Training SKM 2.1385 1.6319 1.0941 0.3135 0.0727
Training CS 4.5033 3.4549 1.1015 0.1862 0.0725
Training DSVDD 3.0222 14.7017 5.8424 3.1243 3.5430

Inference SKM 0.6304 0.4934 0.2114 0.0896 0.0391
Inference CS 0.6295 0.4953 0.2114 0.0893 0.0411
Inference DSVDD 1.2619 5.2011 1.9306 0.7306 0.9952

Table 6: Energy (milliwatts) required for processing one data sample by each of three algorithms implemented at the training and inference stage
measured in the bearing test environment. The lower the value the better.

3.5. Results discussion

The results obtained allow us to conclude that despite the recent advancements in deep learning, the methods
that rely on neural networks are not always a good choice for deploying on resource-constrained microcontrollers
especially on the ones with less powerful CPUs and smaller RAM volumes such as Arduino Uno and Arduino Nano
Every. In this case, the anomaly detection algorithms based on stream clustering look like a more promising solution
as they are nearly as accurate as deep learning based methods and much faster during both the training and the
inference stage. In particular, in our experiments conducted in the bearing test environment, scalable k-means++ is
probably the best choice for deploying on the most resource-constrained boards. Even though its accuracy is slightly
lower than the one obtained with CluStream, when the number of clusters is low, SKM can process two times more
samples during the training stage. In the case of the boards with bigger quantities of computing and memory resources
such as Arduino Nano 33 BLE Sense and LoRa-E5 mini, the situation is not that one-sided. In our experiments on
these boards, neural network based DSVDD outperforms other algorithms in terms of accuracy, but it is not nearly
that efficient in terms of the data processing rate compared to the stream clustering based anomaly detection methods.
Thus, the algorithm selection in that case would depend on the characteristics of the data stream observed in the
environment in which the device with the model is expected to be deployed.

4. Prototype implementation

The research described in this study has been carried out as a part of the project one of the goals of which is
to implement a device that can be employed in an industrial environment for detection of anomalous vibrations. In
mechanisms that include rotating parts, for example fans and pumps, such anomalous vibrations can indicate that
there is a critical defect in one of the parts which may result in the mechanism malfunction. Thus, there is a need
for such a tinyML-driven device that can be easily attached to a normally functioning industrial mechanism to train
its machine learning model which can be then used to detect anomalous vibrations if they take place on this or other
mechanism of the same kind.

In order to implement such a device, we use the DSVDD model as it has provided for the best results in terms
of accuracy for boards with bigger RAM values such as Arduino Nano 33 BLE Sense and LoRa-E5 mini whereas
the sample processing rate reached by the model satisfies the requirements posed by the data stream observed in the
environment under consideration. The energy consumption is also not a problem in our particular use case as there is
a source of electricity in the area where the device is planned to be deployed and therefore it can be powered over a
USB cable.

The resulting anomalous vibration detection device prototype (see Figure 1c) consists of the LoRa-E5 mini devel-
opment board and LSM9DS1 inertial measurement unit (IMU) connected through an inter-integrated circuit commu-
nication channel. Power for the device is fed through a USB connection. The chassis has a powerful magnet to attach
the device to the mechanism on which model training and/or inference is going to take place. The device is a class A
LoRa-device meaning communication is always initiated by the device, and downlink is only possible in two receive
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windows after the uplink message. The downlink capability is not utilised in our prototype. While it is possible to
create your own LoRa network, our prototype utilises a nationwide network provided by Digita.

The prototype functions as follows. During the first stage that lasts for one day, the tinyML model deployed is
trained. After that, the device switches into the inference mode. In this mode, vibration data samples are observed
and classified for one minute. During this one minute interval, an anomaly score value is calculated as the mean of the
distances between the data samples observed and the centre of the DSVDD model. This anomaly score is then sent
to an Azure cloud database via a LoRaWAN gateway. Overall, each LoRa message has a 9 byte payload. In addition
to the two-byte anomaly score it includes a one-byte alert value, and three two-byte latest IMU measurements. Once
the message has been sent, the device enters a five-minute sleep period during which the inference does not take
place. After successful testing in our bearing environment, the resulting prototype has been deployed on a pump in
the maintenance room of our university office building for detection of abnormal behavioural patterns.

5. Conclusion

In this study, we have evaluated multiple anomaly detection algorithms in terms of accuracy, false positive and
true positive rates that can be implemented on tiny microcontrollers with limited computing and memory resources.
In addition, we have measured the data processing and power consumption rates during the training and the inference
stages for three of the most accurate algorithms evaluated. Finally, we have used the best of the algorithms tested to
implement the anomalous vibration detection device that can be deployed on the edge and report the detection results
over LoRaWAN. In the future, we are going to develop novel anomaly detection methods which can be implemented
and trained under the constraints posed by limited computing and memory resources available at microcontrollers.
Furthermore, we are planning to extend the scope of the research by comparing various supervised and reinforcement
machine learning algorithms that can be deployed on resource-constrained devices in realistic use case scenarios.
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Appendix A. Evaluation of anomaly detection algorithms on benchmark datasets

Dataset Algorithm accuracy, %

SKM CS WAP WCM SOM GNG UAE SAE DAE VAE DSOM DSVDD

annthyroid 62.00 60.13 61.10 62.12 63.65 59.19 50.01 50.30 50.38 50.01 58.49 63.50
breastw 98.86 98.86 98.86 98.30 97.35 97.73 98.86 98.86 98.86 98.86 93.56 96.59
cardio 74.62 71.25 75.23 76.74 66.16 82.18 56.50 56.60 56.55 56.85 67.62 65.76
cover 68.96 84.14 69.87 67.18 81.09 77.95 50.00 50.00 50.00 50.00 60.99 66.12
glass 50.00 53.25 50.00 54.88 51.22 50.00 58.54 58.54 58.54 64.63 59.35 50.00
http 99.59 99.82 99.77 99.55 99.02 99.79 99.92 99.92 99.92 99.95 99.76 99.54

ionosphere 71.48 93.33 86.67 88.89 80.37 81.11 67.41 67.41 67.41 66.30 77.41 76.67
letter 50.28 50.83 53.17 52.83 53.44 52.33 50.00 50.00 50.00 50.00 53.83 53.78

mammography 62.93 80.36 71.20 59.65 62.22 53.00 60.00 59.89 59.89 60.09 55.08 65.74
pendigits 65.45 63.04 64.64 68.44 75.09 75.63 50.00 50.00 50.00 50.00 52.41 62.47

pima 55.00 53.00 52.00 51.50 52.67 50.50 51.00 51.00 51.00 51.50 52.33 53.00
satellite 72.35 69.28 71.67 72.87 72.53 70.65 50.00 50.00 50.00 50.00 68.90 71.05

satimage-2 96.93 96.95 97.29 97.64 95.75 96.99 50.00 50.00 50.00 50.00 63.74 91.88
seismic-bumps 50.31 50.93 50.00 50.62 50.24 51.97 51.24 51.24 51.24 51.45 52.01 50.80

shuttle 97.91 97.79 97.93 97.79 98.42 98.19 98.14 98.14 98.14 98.14 62.61 98.46
smtp 79.86 79.77 79.62 79.69 79.59 79.74 50.00 50.00 50.00 50.00 79.77 79.72

thyroid 77.26 82.93 78.23 85.92 84.20 80.68 51.84 51.41 52.45 51.59 76.83 77.64
vertebral 64.29 50.00 50.00 50.00 50.40 50.00 50.00 50.00 50.00 50.00 50.00 50.00
vowels 64.41 55.63 65.12 57.12 62.57 56.23 50.00 50.00 50.00 51.25 65.01 67.20

wbc 58.22 63.38 71.83 64.79 63.38 57.75 53.05 50.47 53.52 54.46 64.55 71.83

valve1 0 87.06 88.46 88.46 88.81 85.90 75.52 50.00 50.00 50.00 50.00 69.11 80.77
valve1 1 86.15 87.91 84.15 83.45 78.87 83.10 50.00 50.00 50.00 50.00 83.10 87.44
valve1 2 77.42 73.05 70.57 90.78 74.70 58.87 50.00 50.00 50.00 50.00 70.69 73.52
valve1 3 96.60 96.71 96.48 96.48 96.60 95.77 95.66 95.89 95.77 96.13 96.48 96.83
valve1 4 76.92 84.27 74.13 75.52 66.67 55.24 50.00 50.00 50.00 50.00 62.94 63.29
valve1 5 87.50 88.08 88.19 88.54 87.38 88.19 53.12 53.24 56.71 51.62 87.50 85.19
valve1 6 91.26 91.14 90.91 90.21 90.21 90.21 80.89 75.41 76.57 87.76 90.21 89.28
valve1 7 86.77 83.97 81.68 84.35 81.17 80.53 90.08 90.71 80.92 85.88 86.13 82.70
valve1 8 96.83 95.77 94.01 94.37 81.46 94.37 50.00 50.00 50.00 50.12 90.85 95.19
valve1 9 95.80 97.90 96.85 98.25 93.71 93.01 53.73 52.33 58.28 50.58 94.06 93.71
valve1 10 97.18 97.54 96.83 97.54 94.25 96.48 84.74 88.73 87.21 90.38 95.31 96.48
valve1 11 83.69 84.04 83.10 83.80 86.27 83.10 50.00 50.82 51.53 50.70 84.86 82.39
valve1 12 91.08 99.65 90.49 89.79 98.00 89.79 50.00 50.00 50.00 50.00 91.67 90.73
valve1 13 92.61 92.02 90.85 92.25 78.52 92.25 76.64 88.15 81.10 87.79 93.08 92.02
valve1 14 88.89 89.36 89.36 88.77 89.72 88.65 73.40 75.77 86.41 86.52 89.13 89.48
valve1 15 92.66 95.45 94.76 95.45 82.17 94.76 52.10 53.50 57.11 52.91 95.45 94.06
valve2 0 91.67 95.95 90.71 90.00 92.98 85.36 50.00 50.00 50.00 50.00 91.31 91.79
valve2 1 91.85 90.89 90.29 91.37 91.13 89.57 68.59 80.70 79.74 85.25 90.53 91.37
valve2 2 90.71 92.38 90.71 90.36 81.90 90.36 50.00 50.00 50.00 50.00 90.60 90.48
valve2 3 91.59 94.25 91.59 92.04 90.56 91.15 73.60 79.50 81.56 85.10 91.30 90.86

Table A.7: Accuracy (%) of various anomaly detection algorithms implemented under Arduino Uno Rev3 memory constraints using ODDS and
SKAB benchmark datasets.
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Dataset Algorithm accuracy, %

SKM CS WAP WCM SOM GNG UAE SAE DAE VAE DSOM DSVDD

annthyroid 62.00 60.13 62.94 62.53 63.65 58.06 50.04 50.13 50.40 50.01 59.69 62.64
breastw 98.86 98.86 98.86 98.30 97.54 97.73 98.86 98.86 98.86 99.05 94.89 98.48
cardio 77.49 76.13 81.87 76.49 65.36 82.18 56.34 56.50 56.65 56.70 64.30 70.09
cover 68.96 82.90 78.55 67.25 81.42 62.34 50.00 50.00 50.00 50.00 59.22 68.36
glass 50.00 51.22 50.00 54.88 51.22 50.00 58.54 58.54 58.54 63.41 54.88 50.00
http 99.59 99.82 99.67 99.55 99.02 98.82 99.92 99.92 99.92 99.95 99.88 99.61

ionosphere 83.70 93.33 80.00 88.89 74.81 81.11 67.41 68.15 67.41 69.26 82.22 84.81
letter 54.39 51.44 53.17 53.33 58.06 52.33 50.00 50.00 50.00 50.00 55.06 53.67

mammography 62.93 80.36 71.20 62.71 62.22 51.69 59.89 59.89 59.89 60.09 53.06 64.61
pendigits 65.45 63.04 66.62 76.08 78.01 83.38 50.00 50.00 50.00 50.00 50.58 81.21

pima 55.00 53.00 52.00 51.17 52.67 50.50 51.00 51.00 51.00 51.50 52.00 52.17
satellite 71.79 73.11 71.27 72.87 73.15 69.97 50.00 50.00 50.00 50.00 70.42 72.17

satimage-2 97.19 96.95 97.47 97.34 94.97 93.89 50.00 50.00 50.00 50.00 79.83 96.92
seismic-bumps 50.55 50.93 50.00 50.62 50.86 51.97 51.24 51.24 51.24 51.45 51.90 50.35

shuttle 97.91 97.85 98.27 97.89 98.42 98.18 98.14 98.14 98.14 98.14 64.26 98.83
smtp 79.86 79.77 79.69 79.71 79.59 79.87 50.00 50.00 50.00 50.00 76.40 76.61

thyroid 77.26 82.93 83.74 83.74 84.20 80.68 52.29 52.27 53.40 51.88 75.31 75.85
vertebral 64.29 50.00 50.00 50.00 50.40 50.00 50.00 50.00 50.00 50.00 51.59 50.00
vowels 64.41 56.52 65.84 61.03 58.36 56.23 50.00 50.00 50.00 50.59 63.35 76.93

wbc 63.38 66.67 75.35 71.13 63.38 57.75 52.58 50.47 53.76 53.05 60.80 71.60

valve1 0 87.06 88.46 85.31 88.81 85.90 75.52 50.00 50.00 50.00 50.00 75.17 83.92
valve1 1 86.15 87.91 88.73 83.45 78.87 83.10 50.00 50.00 50.00 50.00 87.44 87.56
valve1 2 77.42 73.05 86.88 90.78 74.70 58.87 50.00 50.00 50.00 50.00 68.56 80.50
valve1 3 96.60 96.71 96.48 96.48 96.60 95.77 95.66 95.89 95.66 91.31 97.42 96.48
valve1 4 76.92 84.27 85.31 72.03 71.45 55.24 50.00 50.00 50.00 50.00 66.43 60.14
valve1 5 87.50 88.31 86.11 88.54 87.38 88.19 52.89 54.63 52.20 51.74 85.76 87.38
valve1 6 91.26 91.14 90.21 90.21 90.21 90.21 69.11 72.61 74.94 62.59 91.61 89.28
valve1 7 86.77 84.48 84.73 83.72 81.17 80.53 80.03 90.84 88.55 66.79 86.77 82.82
valve1 8 96.83 95.77 94.01 95.42 81.46 94.37 50.00 50.00 50.00 50.12 83.33 95.42
valve1 9 95.80 97.90 96.50 96.85 93.71 93.01 51.52 53.03 52.10 51.52 92.66 93.24
valve1 10 97.18 97.77 96.83 97.54 94.25 96.48 85.92 76.53 85.56 80.75 96.60 96.83
valve1 11 83.69 84.04 83.10 83.22 86.27 83.10 51.17 51.53 52.70 50.00 84.04 82.86
valve1 12 91.08 99.65 98.24 93.78 98.00 89.79 50.00 50.00 50.00 50.00 84.86 97.18
valve1 13 92.61 92.02 90.85 94.48 92.37 92.25 76.17 84.04 85.45 74.77 92.49 92.96
valve1 14 88.89 89.36 90.43 90.43 89.72 88.65 77.78 85.82 75.18 86.64 89.83 89.95
valve1 15 92.66 95.45 93.71 95.45 82.17 94.76 52.33 57.34 56.76 50.12 92.54 94.41
valve2 0 91.67 95.95 93.21 90.00 92.98 85.36 50.00 50.00 50.00 50.00 94.29 95.48
valve2 1 91.85 90.89 90.65 92.45 91.13 89.57 86.09 85.13 72.90 66.91 90.65 90.77
valve2 2 90.71 92.38 90.36 90.36 81.90 90.36 50.00 50.00 50.00 50.00 91.79 92.26
valve2 3 91.59 94.25 91.59 93.36 90.56 91.15 76.11 79.35 88.20 81.42 91.30 92.18

Table A.8: Accuracy (%) of various anomaly detection algorithms implemented under Arduino Nano Every memory constraints using ODDS and
SKAB benchmark datasets.
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Dataset Algorithm accuracy, %

SKM CS WAP WCM SOM GNG UAE SAE DAE VAE DSOM DSVDD

annthyroid 62.00 60.13 61.97 62.53 63.65 58.06 50.44 50.41 50.14 50.00 58.31 61.88
breastw 98.86 98.86 98.86 98.30 97.54 97.73 98.86 98.86 98.86 98.86 92.42 98.11
cardio 77.49 71.25 81.87 79.00 65.36 82.18 56.50 56.50 56.50 56.60 65.21 69.39
cover 68.96 82.90 78.55 67.25 81.42 67.18 50.00 50.00 50.00 50.00 58.59 73.67
glass 50.00 51.22 50.00 56.10 51.22 50.00 58.54 58.54 58.54 63.01 57.72 51.22
http 99.59 99.82 99.67 99.60 99.02 99.37 99.92 99.92 99.92 99.96 99.77 99.53

ionosphere 82.59 93.33 84.44 88.89 74.81 81.11 67.04 67.04 67.78 70.00 78.52 86.67
letter 54.39 52.89 53.67 53.33 58.06 52.33 50.00 50.00 50.00 50.00 58.17 54.11

mammography 62.93 80.36 71.20 63.13 62.22 52.27 59.94 59.89 59.89 60.09 54.40 64.05
pendigits 65.45 63.04 66.62 76.08 78.01 83.38 50.00 50.00 50.00 50.00 50.91 77.74

pima 55.00 53.00 52.00 51.67 52.67 50.50 51.00 51.00 51.00 51.50 54.67 51.33
satellite 71.79 71.99 72.53 73.08 73.08 69.97 50.00 50.00 50.00 50.00 68.07 72.15

satimage-2 97.19 96.95 97.47 97.34 94.97 93.89 50.00 50.00 50.00 50.00 81.82 96.76
seismic-bumps 50.55 51.73 50.31 50.62 50.86 51.97 51.24 51.24 51.24 51.24 50.69 50.14

shuttle 97.91 97.85 98.52 97.98 98.42 97.79 98.14 98.14 98.14 98.14 68.08 98.54
smtp 79.86 79.77 79.69 79.71 79.59 69.82 50.00 50.00 50.00 50.00 76.37 79.74

thyroid 77.26 82.93 83.47 83.74 84.20 80.68 52.31 52.04 53.06 50.68 74.83 76.80
vertebral 64.29 50.00 50.00 50.00 50.40 50.00 50.00 50.00 50.00 50.00 53.97 50.00
vowels 64.41 56.52 67.97 61.03 58.36 56.23 50.00 50.00 50.00 50.00 61.33 87.96

wbc 63.38 66.20 75.35 70.42 64.32 57.75 50.47 51.41 52.35 52.82 64.08 71.60

valve1 0 87.06 88.46 85.31 88.81 85.90 75.52 50.00 50.00 50.00 50.00 81.59 88.00
valve1 1 86.15 87.91 89.79 83.45 78.87 83.10 50.00 50.00 50.00 50.00 86.97 92.02
valve1 2 77.42 73.05 90.43 90.78 74.70 58.87 50.00 50.00 50.00 50.00 80.38 88.42
valve1 3 96.60 96.71 96.48 96.48 96.60 95.77 95.42 95.77 95.77 96.13 96.36 96.24
valve1 4 76.92 84.27 85.31 72.03 71.45 55.24 50.00 50.00 50.00 50.00 69.93 74.24
valve1 5 87.50 88.31 86.11 88.54 87.38 88.19 53.01 53.01 57.06 52.08 87.50 86.92
valve1 6 91.26 91.14 90.21 90.21 90.21 90.21 80.65 80.42 84.62 86.48 91.26 89.98
valve1 7 86.77 84.48 84.73 85.50 81.17 80.53 89.19 85.11 89.57 87.40 84.99 82.57
valve1 8 96.83 95.77 94.01 95.42 81.46 94.37 50.00 50.00 50.00 50.00 76.06 95.89
valve1 9 95.80 97.90 96.50 96.85 93.71 93.01 50.00 54.20 52.45 53.85 92.31 95.57
valve1 10 97.18 97.77 96.83 97.54 94.25 96.48 77.46 90.61 76.29 87.68 95.07 97.07
valve1 11 83.69 84.04 83.10 83.92 86.27 83.10 50.00 51.53 50.47 50.00 83.57 82.75
valve1 12 91.08 99.65 98.24 95.07 98.00 89.79 50.00 50.00 50.00 50.00 92.37 97.42
valve1 13 92.61 92.02 92.96 94.48 92.37 92.25 86.03 76.64 87.09 87.32 91.67 91.43
valve1 14 88.89 89.36 90.43 89.01 89.72 88.65 70.33 83.33 79.91 84.99 88.77 89.48
valve1 15 92.66 95.45 93.71 95.45 82.17 94.76 50.00 58.04 52.10 50.00 94.64 94.99
valve2 0 91.67 95.95 93.21 90.00 92.98 85.36 50.00 50.00 50.00 50.00 93.69 93.69
valve2 1 91.85 90.89 90.65 91.73 91.13 89.57 86.33 74.58 72.66 81.06 91.37 91.01
valve2 2 90.71 92.38 90.36 90.36 81.90 90.36 50.00 50.00 50.00 50.00 90.36 93.21
valve2 3 91.59 94.25 91.59 93.36 90.56 91.15 69.47 75.22 75.96 83.63 91.59 91.00

Table A.9: Accuracy (%) of various anomaly detection algorithms implemented under Arduino Nano 33 IoT memory constraints using ODDS and
SKAB benchmark datasets.
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Dataset Algorithm accuracy, %

SKM CS WAP WCM SOM GNG UAE SAE DAE VAE DSOM DSVDD

annthyroid 62.00 60.13 61.97 62.53 63.65 58.06 50.40 50.04 50.29 50.00 57.43 61.50
breastw 98.86 98.86 98.86 98.30 97.54 97.73 98.86 98.86 98.86 99.05 89.20 98.30
cardio 77.49 71.25 81.87 79.00 65.36 82.18 56.34 56.50 56.50 56.60 61.28 69.64
cover 68.96 82.90 78.55 67.25 81.42 67.18 50.00 50.00 50.00 50.00 58.38 72.96
glass 50.00 51.22 50.00 56.10 51.22 50.00 58.54 58.54 58.54 63.01 56.50 50.00
http 99.59 99.82 99.67 99.60 99.02 99.37 99.92 99.92 99.92 99.96 99.78 99.55

ionosphere 82.59 93.33 84.44 88.89 74.81 81.11 67.41 67.04 68.15 68.52 80.00 83.70
letter 54.39 52.89 53.67 53.33 58.06 52.33 50.00 50.00 50.00 50.00 56.00 54.28

mammography 62.93 80.36 71.20 63.13 62.22 52.27 59.89 59.89 59.89 60.19 53.59 65.80
pendigits 65.45 63.04 66.62 76.08 78.01 83.38 50.00 50.00 50.00 50.00 51.03 73.75

pima 55.00 53.00 52.00 51.67 52.67 50.50 51.00 51.00 51.00 51.50 53.00 52.17
satellite 71.79 71.99 72.53 73.08 73.08 69.97 50.00 50.00 50.00 50.00 67.92 71.50

satimage-2 97.19 96.95 97.47 97.34 94.97 93.89 50.00 50.00 50.00 50.00 74.08 96.73
seismic-bumps 50.55 51.73 50.31 50.62 50.86 51.97 51.24 51.24 51.24 51.24 50.73 50.14

shuttle 97.91 97.85 98.52 97.98 98.42 97.79 98.14 98.14 98.14 98.14 61.83 99.11
smtp 79.86 79.77 79.69 79.71 79.59 69.82 50.00 50.00 50.00 50.00 76.33 79.77

thyroid 77.26 82.93 83.47 83.74 84.20 80.68 52.36 52.22 52.31 50.68 70.93 79.89
vertebral 64.29 50.00 50.00 50.00 50.40 50.00 50.00 50.00 50.00 50.00 54.37 50.00
vowels 64.41 56.52 67.97 61.03 58.36 56.23 50.00 50.00 50.00 50.00 58.24 81.02

wbc 63.38 66.20 75.35 70.42 64.32 57.75 50.00 50.00 50.47 51.88 57.51 65.96

valve1 0 87.06 88.46 85.31 88.81 85.90 75.52 50.00 50.00 50.00 50.00 80.77 88.34
valve1 1 86.15 87.91 89.79 83.45 78.87 83.10 50.00 50.00 50.00 50.00 88.85 90.38
valve1 2 77.42 73.05 90.43 90.78 74.70 58.87 50.00 50.00 50.00 50.00 73.40 84.99
valve1 3 96.60 96.71 96.48 96.48 96.60 95.77 95.54 95.77 95.66 96.01 97.77 96.60
valve1 4 76.92 84.27 85.31 72.03 71.45 55.24 50.00 50.00 50.00 50.00 68.41 66.78
valve1 5 87.50 88.31 86.11 88.54 87.38 88.19 51.74 53.24 52.89 52.31 88.54 87.04
valve1 6 91.26 91.14 90.21 90.21 90.21 90.21 66.78 73.08 72.14 67.95 91.03 89.98
valve1 7 86.77 84.48 84.73 85.50 81.17 80.53 79.13 87.02 88.55 85.75 86.26 82.82
valve1 8 96.83 95.77 94.01 95.42 81.46 94.37 50.00 50.00 50.00 50.00 70.42 95.31
valve1 9 95.80 97.90 96.50 96.85 93.71 93.01 50.00 50.00 51.52 50.82 92.89 94.06
valve1 10 97.18 97.77 96.83 97.54 94.25 96.48 76.17 76.06 76.53 78.52 95.77 96.95
valve1 11 83.69 84.04 83.10 83.92 86.27 83.10 50.00 50.00 50.00 50.12 83.33 83.57
valve1 12 91.08 99.65 98.24 95.07 98.00 89.79 50.00 50.00 50.00 50.00 93.54 98.12
valve1 13 92.61 92.02 92.96 94.48 92.37 92.25 75.82 88.26 76.29 86.50 92.25 91.67
valve1 14 88.89 89.36 90.43 89.01 89.72 88.65 72.93 85.58 78.72 70.80 89.01 89.72
valve1 15 92.66 95.45 93.71 95.45 82.17 94.76 50.00 50.00 50.58 50.00 94.29 95.34
valve2 0 91.67 95.95 93.21 90.00 92.98 85.36 50.00 50.00 50.00 50.00 95.36 94.88
valve2 1 91.85 90.89 90.65 91.73 91.13 89.57 68.11 73.26 73.14 65.95 91.01 91.37
valve2 2 90.71 92.38 90.36 90.36 81.90 90.36 50.00 50.00 50.00 50.00 89.88 92.86
valve2 3 91.59 94.25 91.59 93.36 90.56 91.15 71.24 74.19 85.40 71.39 91.89 90.86

Table A.10: Accuracy (%) of various anomaly detection algorithms implemented under Arduino Nano 33 Sense memory constraints using ODDS
and SKAB benchmark datasets.
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Dataset Algorithm accuracy, %

SKM CS WAP WCM SOM GNG UAE SAE DAE VAE DSOM DSVDD

annthyroid 62.00 60.13 61.97 62.53 63.65 58.06 50.35 50.10 50.39 50.00 58.15 62.09
breastw 98.86 98.86 98.86 98.30 97.54 97.73 98.86 98.86 98.86 98.86 87.31 97.73
cardio 77.49 71.25 81.87 79.00 65.36 82.18 56.50 56.34 56.65 56.55 62.79 68.08
cover 68.96 82.90 78.55 67.25 81.42 67.18 50.00 50.00 50.00 50.00 58.56 75.42
glass 50.00 51.22 50.00 56.10 51.22 50.00 58.54 58.54 58.54 63.01 59.76 51.22
http 99.59 99.82 99.67 99.60 99.02 99.37 99.92 99.92 99.92 99.96 99.67 99.87

ionosphere 82.59 93.33 84.44 88.89 74.81 81.11 66.67 67.41 68.52 67.41 82.96 84.81
letter 54.39 52.89 53.67 53.33 58.06 52.33 50.00 50.00 50.00 50.00 55.44 54.67

mammography 62.93 80.36 71.20 63.13 62.22 52.27 59.89 59.89 59.89 59.99 53.96 66.38
pendigits 65.45 63.04 66.62 76.08 78.01 83.38 50.00 50.00 50.00 50.00 51.35 74.17

pima 55.00 53.00 52.00 51.67 52.67 50.50 51.00 51.00 51.00 51.50 51.33 51.50
satellite 71.79 71.99 72.53 73.08 73.08 69.97 50.00 50.00 50.00 50.00 68.58 71.88

satimage-2 97.19 96.95 97.47 97.34 94.97 93.89 50.00 50.00 50.00 50.00 76.64 97.31
seismic-bumps 50.55 51.73 50.31 50.62 50.86 51.97 51.24 51.24 51.24 51.24 50.73 50.14

shuttle 97.91 97.85 98.52 97.98 98.42 97.79 98.14 98.14 98.14 98.14 65.19 98.54
smtp 79.86 79.77 79.69 79.71 76.58 69.82 50.00 50.00 50.00 50.00 79.75 83.01

thyroid 77.26 82.93 83.47 83.74 84.20 80.68 52.18 52.79 53.49 50.68 76.03 77.19
vertebral 64.29 50.00 50.00 50.00 50.40 50.00 50.00 50.00 50.00 50.00 54.37 50.00
vowels 64.41 56.52 67.97 61.03 58.36 56.23 50.00 50.00 50.00 50.00 62.93 80.84

wbc 63.38 66.20 75.35 70.42 64.32 57.75 50.00 50.47 50.94 51.88 56.81 66.20

valve1 0 87.06 88.46 85.31 88.81 85.90 75.52 50.00 50.00 50.00 50.00 77.62 88.58
valve1 1 86.15 87.91 89.79 83.45 78.87 83.10 50.00 50.00 50.00 50.00 90.14 89.67
valve1 2 77.42 73.05 90.43 90.78 74.70 58.87 50.00 50.00 50.00 50.00 78.84 88.18
valve1 3 96.60 96.71 96.48 96.48 96.60 95.77 86.97 95.66 95.54 95.89 96.48 96.36
valve1 4 76.92 84.27 85.31 72.03 71.45 55.24 50.00 50.00 50.00 50.00 71.79 68.76
valve1 5 87.50 88.31 86.11 88.54 87.38 88.19 51.62 52.89 53.36 53.01 87.73 86.81
valve1 6 91.26 91.14 90.21 90.21 90.21 90.21 67.60 73.54 76.46 65.27 90.56 90.56
valve1 7 86.77 84.48 84.73 85.50 81.17 80.53 80.03 86.39 78.63 72.14 84.99 81.04
valve1 8 96.83 95.77 94.01 95.42 81.46 94.37 50.00 50.00 50.00 50.00 78.05 95.31
valve1 9 95.80 97.90 96.50 96.85 93.71 93.01 50.00 50.00 52.56 50.00 94.99 97.55
valve1 10 97.18 97.77 96.83 97.54 94.25 96.48 73.12 76.29 79.81 66.43 96.36 96.95
valve1 11 83.69 84.04 83.10 83.92 86.27 83.10 50.00 51.53 50.00 50.00 84.74 82.75
valve1 12 91.08 99.65 98.24 95.07 98.00 89.79 50.00 50.00 50.00 50.00 89.32 99.30
valve1 13 92.61 92.02 92.96 94.48 92.37 92.25 71.71 88.62 83.45 70.19 95.19 92.96
valve1 14 88.89 89.36 90.43 89.01 89.72 88.65 74.35 85.46 77.42 69.27 89.72 89.36
valve1 15 92.66 95.45 93.71 95.45 82.17 94.76 52.33 51.17 50.58 50.00 88.69 96.15
valve2 0 91.67 95.95 93.21 90.00 92.98 85.36 50.00 50.00 50.00 50.00 93.93 93.81
valve2 1 91.85 90.89 90.65 91.73 91.13 89.57 73.86 84.53 72.30 56.71 89.93 91.37
valve2 2 90.71 92.38 90.36 90.36 81.90 90.36 50.00 50.00 50.00 50.00 90.36 94.40
valve2 3 91.59 94.25 91.59 93.36 90.56 91.15 72.86 74.19 76.55 74.78 93.36 90.86

Table A.11: Accuracy (%) of various anomaly detection algorithms implemented under LoRa-E5 mini memory constraints using ODDS and SKAB
benchmark datasets.
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Appendix B. Evaluation of anomaly detection algorithms in the bearing test environment
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Figure B.5: Evaluation of anomaly detection algorithms in the bearing test environment on Arduino Uno Rev3. Figure B.5a shows dependence of
true positive rate on false positive rate for six anomaly detection algorithms. Accuracy improvement for three best algorithms with two AutoML
frameworks can be seen in Figure B.5b. Figures B.5c and B.5d show how many samples can be processed by each of these three algorithms during
the training and inference stage respectively; each of the stages lasts for one minute. Power consumption for the same three algorithms during the
training and inference stage is shown respectively in Figures B.5e and B.5f.
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Figure B.6: Evaluation of anomaly detection algorithms in the bearing test environment on Arduino Nano Every. Figure B.6a shows dependence
of true positive rate on false positive rate for six anomaly detection algorithms. Accuracy improvement for three best algorithms with two AutoML
frameworks can be seen in Figure B.6b. Figures B.6c and B.6d show how many samples can be processed by each of these three algorithms during
the training and inference stage respectively; each of the stages lasts one minute. Power consumption for the same three algorithms during the
training and inference stage is shown respectively in Figures B.6e and B.6f.
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Figure B.7: Evaluation of anomaly detection algorithms in the bearing test environment on Arduino Nano 33 IoT. Figure B.7a shows dependence
of true positive rate on false positive rate for six anomaly detection algorithms. Accuracy improvement for three best algorithms with two AutoML
frameworks can be seen in Figure B.7b. Figures B.7c and B.7d show how many samples can be processed by each of these three algorithms during
the training and inference stage respectively; each of the stages lasts one minute. Power consumption for the same three algorithms during the
training and inference stage is shown respectively in Figures B.7e and B.7f.
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Figure B.8: Evaluation of anomaly detection algorithms in the bearing test environment on Arduino Nano 33 BLE Sense. Figure B.8a shows
dependence of true positive rate on false positive rate for six anomaly detection algorithms. Accuracy improvement for three best algorithms
with two AutoML frameworks can be seen in Figure B.8b. Figures B.8c and B.8d show how many samples can be processed by each of these
three algorithms during the training and inference stage respectively; each of the stages lasts one minute. Power consumption for the same three
algorithms during the training and inference stage is shown respectively in Figures B.8e and B.8f.
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