
Shortened introduction to variational autoencoders (VAE)
Or, how to understand a VAE implementation

Juha Jeronen

December 23, 2022

Version 0.3

Contents

1 Introduction 3

2 Problem setup and the proposed solution 3

3 The evidence lower bound (ELBO) 5

4 Making the ELBO computable 7

5 The distributions pθ(z), pθ(x|z), and qφ(z|x) 8

6 ELBO and Bayes’ theorem 11

7 ELBO loss evaluation 12

8 Concluding notes 13

9 References 14

10 Online resources for further reading 15

2

1 Introduction

The aim of this document is to condense the main points from the tutorial paper by the inventors of
VAE, Kingma and Welling (2019), in order to facilitate understanding VAE implementations; especially
the loss computation, and how to interpret the outputs of the neural network components of the system.

It should be kept in mind that essentially, a neural network just produces arbitrary numbers. Intuitively,
the "magic" is in how we use those numbers (i.e. what we declare them to represent), how we set up
our objective function for training the network, and how the optimization process (training) drives those
numbers to actually become the thing we arbitrarily declared them to represent.

We cite other studies where they particularly add value. We add our own notes for clarification where
we feel it is necessary. We assume familiarity with classical (deterministic) mathematical modeling and
numerics, but no background in stochastics.

2 Problem setup and the proposed solution

Consider a situation where we have acquired a set of N distinct measurements (observations) x, taken
from the same, unchanging system. Beside physical modeling from first principles, there is another
fundamental approach for modeling for understanding the behavior of the system, providing a different
kind of insight and different possibilities for numerical computation.

This other approach is statistical. The critical insight is that repeated observations of an unchanging
system can be thought of as samples drawn from an unknown probability distribution implicitly defined
by the system.

To characterize the system, we would like to construct a statistical model that approximates the unknown
distribution. Let D be a finite dataset, consisting of N independently and identically distributed (i.i.d.)
data points x, which represent observations of our system. We now ask: given some model θ, what is
the probability that drawing N i.i.d. samples from that model produces the dataset D?

Taking a bayesian viewpoint, this probability represents our degree of belief in the model θ. Informally,
models that yield a higher probability for the observed dataset are better approximations of the true,
unknown distribution.

I.i.d. probabilities combine by multiplication, so the probability of the dataset D under the model θ is

pθ(D) =
∏
x∈D

pθ(x) (1)

In practice, for numerical stability it is better to work with log-probabilities, so we take the logarithm:

log pθ(D) = log
∏
x∈D

pθ(x) =
∑
x∈D

log pθ(x) (2)

In other words, the log-probability of the dataset D under the model θ is the sum of log-probabilities of
the individual data points x under that model. By maximizing this log-probability with respect to θ (over
some considered class of models, which we supply), we can find the model — among those considered
— that is the most likely. This is known as the maximum log-likelihood (ML) criterion.

Maximum log-likelihood is a simple stochastic model selection criterion. Kingma and Welling (2019)
point out that more advanced bayesian criteria include maximum a posteriori (MAP) estimation, and in-
ference of a full approximate posterior distribution over the parameters. We will use ML for its simplicity.

3

The quantity pθ(x), when interpreted as a function of θ, is the likelihood (of the data point x, given
the model θ), also known as the model evidence. In other words, pθ(x) is the probability mass assigned
to data point x by the model θ. In yet other words, it measures the strength of evidence that the data
point x provides for the model θ.

A likelihood is not a probability density function, because in general,∫
θ∈Θ

pθ(x) dθ 6= 1 (3)

where Θ is the set of all considered models (which can be continuous if we are working with a family
of parameterized models, hence the integral). In other words, for θ varying and x fixed, pθ(x) is not a
probability density function. Hence the different name likelihood.

But for any given model (i.e. fixed θ), ∫
x∈X

pθ(x) dx = 1 (4)

where X is the set of all possible observations. In other words, for θ fixed and x varying, pθ(x) is a
probability density function — it is the probability density of the random variable x under the model θ.

The likelihood is a slice, cutting across different models, of the probability density assigned by each of these
models to a fixed data point x. In models with latent (unobserved) variables, pθ(x) is termed the marginal
likelihood, because the latent variables z have been marginalized out (i.e. integrated or summed over,
as appropriate).

Some machine-learning models with latent variables are especially powerful for manifold learning, i.e.
the automatic extraction of structure from given data. We will concentrate on a particular subclass of
these models: the variational autoencoder (VAE).

We denote the latent (unobserved) variables by z. It may help intuition to think of z as a set of features or
explanatory factors that describe the data x. For example, in a photograph dataset, such features could
include the viewing angle and the illumination conditions. These variables are not explicitly provided
in the dataset (hence unobserved or latent), but if discovered, the data can be explained in terms of them.

In autoencoders, the latent space is chosen to have a much lower dimension than the data space. The
idea is that by bottlenecking the reconstruction process through a low-dimensional space, then in order
for the model to be able to produce a faithful reconstruction of the input data x, it is forced to make
the latent variables z to represent higher-level features that explain the observed variation in the data.
Informally, this is especially true if the coded representation can be made regular (in some appropriate
sense; continuity is necessary but not sufficient) in terms of small perturbations to the data. This is where
the variational autoencoder comes in.

Furthermore, we will impose the latent space to have a simple structure. The premise is that in any real-
world application, we can expect the features to follow a simple distribution — provided that we can
discover those features. The problem then reduces to learning the (highly nonlinear) mapping between
the data space and the latent space — in other words, discovering how to map the seemingly complex
data onto features that follow a simple distribution.1 Thus the optimization of a VAE can also be viewed
as a kind of nonlinear PCA (principal component analysis), but with no orthogonality constraint.

An important practical issue is that in realistic applications, the true posterior of the latent variables
conditioned on data, pθ(z|x), is intractable to compute, as is the marginal likelihood of the data, pθ(x).
The now-famous paper by Kingma and Welling (2013) provides a variational method to approximate
pθ(z|x), and to choose the optimal model from a considered class. We will now look at the details of this
method.

1Note that in general, the choice of the features is not unique.

4

3 The evidence lower bound (ELBO)

The evidence lower bound, commonly abbreviated as ELBO, is defined for a data point x as

Lθ,φ(x) := Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)] (5)

where θ are the parameters of the decoder (a.k.a. generative model, or observation model), and φ are
the parameters of the encoder (a.k.a. inference model). The encoder parameters φ are also known as the
variational parameters for a reason that will become apparent shortly. Note the expectation over the
latent variables z, drawn from an auxiliary distribution qφ(z|x).

Equation (5) is sometimes called the joint-contrastive expression of the ELBO.

What is the motivation behind the ELBO? Following Kingma and Welling (2019), consider

Lθ,φ(x) ≡ Eqφ(z|x)

[
log pθ(x, z)− log qφ(z|x)

]
= Eqφ(z|x)

[
log
(
pθ(x)pθ(z|x)

)
− log qφ(z|x)

]
(rewrite joint probability)

= Eqφ(z|x)

[
log pθ(x) + log pθ(z|x)− log qφ(z|x)

]
(logarithm arithmetic)

= Eqφ(z|x)

[
log pθ(x)−

(
log qφ(z|x)− log pθ(z|x)

)]
(regroup)

= Eqφ(z|x)

[
log pθ(x)− log

qφ(z|x)

pθ(z|x)

]
(logarithm arithmetic)

= Eqφ(z|x) log pθ(x)− Eqφ(z|x) log
qφ(z|x)

pθ(z|x)
(linearity of expectation)

= Eqφ(z|x) log pθ(x)−DKL(qφ(z|x)‖pθ(z|x)) (definition of Kullback–Leibler divergence)

≡ log pθ(x)−DKL(qφ(z|x)‖pθ(z|x)) (evaluate the expectation in the first term) (6)

so the ELBO is the marginal log-likelihood of the model θ at the data point x, namely log pθ(x), minus
the KL divergence of qφ(z|x) from the (intractable) true posterior distribution pφ(z|x).

The ELBO can be computed for any probability density qφ(z|x), and it always gives a guaranteed lower
bound for log pθ(x), so it yields a variational method to approximate the otherwise intractable marginal
log-likelihood log pθ(x). The tightness of the bound depends on the chosen qφ(z|x). As always with
variational techniques, a completely inappropriate qφ(z|x) may give a correct but useless lower bound
of −∞, so some care must be taken in choosing qφ(z|x).

Consider now what happens if we maximize the ELBO by varying the distribution qφ(z|x), while keep-
ing everything else fixed. Since DKL ≥ 0, the maximum with respect to the distribution qφ(z|x) is
reached when qφ(z|x) = pθ(z|x). The marginal log-likelihood term log pθ(x) does not depend on qφ(z|x),
so in this maximization, it is a constant.

Thus, if we can find a distribution qφ(z|x) that approximates the intractable true posterior pθ(z|x), the
ELBO will approximate the marginal log-likelihood log pθ(x), which is our maximization objective for
model selection via the ML criterion. Thus we recognize the auxiliary distribution qφ(z|x) as an approx-
imate posterior.

In practice, we will represent qφ(z|x) using a parametric, pre-chosen family of distributions, so in general,
it will not be able to perfectly approximate an arbitrary pθ(z|x). The bound will not be tight; but if
we choose the family qφ(z|x) to be sufficiently flexible, the bound will however be useful for practical
purposes.

Also, in practice we maximize with respect to both θ and φ concurrently. This will both approximately
maximize log pθ(x), and improve the approximate posterior qφ(z|x), making it closer to pθ(z|x) within
the constraints of the chosen family of distributions qφ(z|x), thus making the bound tighter.

5

Summing over the ELBOs of all data points x ∈ D, we obtain the total ELBO of the model (θ, φ). The
ELBO loss (a.k.a. VAE loss) is the negative of the total ELBO; this is our minimization objective for
choosing the best model (out of the class considered).

Importantly, the ELBO is computable. We can rewrite it as

Lθ,φ(x) ≡ Eqφ(z|x)

[
log pθ(x, z)− log qφ(z|x)

]
= Eqφ(z|x)

[
log
(
pθ(z)pθ(x|z)

)
− log qφ(z|x)

]
(rewrite joint probability the other way)

= Eqφ(z|x)

[
log pθ(z)︸ ︷︷ ︸
latent prior

+ log pθ(x|z)︸ ︷︷ ︸
observation model

− log qφ(z|x)︸ ︷︷ ︸
approximate posterior

]
(logarithm arithmetic)

= Eqφ(z|x)

[
log pθ(x|z)−

(
log qφ(z|x)− log pθ(z)

)]
(regroup)

= Eqφ(z|x)

[
log pθ(x|z)

]
−DKL(qφ(z|x)‖pθ(z)) (similarly as before) (7)

The third (annotated) line is how VAE implementations commonly implement the ELBO, using a single-
sample Monte Carlo (MC) estimate of this expectation, discussed below. Importantly, the expectation is
taken over z drawn from the approximate posterior qφ(z|x), which we have available for sampling. See
e.g. Kingma and Welling (2019, algorithm 2).

The conditional distribution qφ(z|x) is called the inference model (i.e. or approximate posterior, or
encoder); the intuition is that it attempts to infer features z from the given data point x.

The conditional distribution pθ(x|z) is called the observation model (i.e. generative model, or decoder);
it attempts to explain what observations x could have generated the code point z. Or interpreted differ-
ently, given a random code point z, it generates new data that is statistically similar to the members of
the dataset D.

The distribution pθ(z) is termed the latent prior, or just the prior. This is because it is not conditioned
on any observations. In other words, before looking at any data, pθ(z) is the distribution we believe the
code points z should follow.

The last line of (7) is sometimes called the prior-contrastive expression of the ELBO. It offers an al-
ternative interpretation: we can also view the ELBO as the expectation — under drawing z from the
approximate posterior qφ(z|x) — of the log-likelihood of the observation model pθ(x|z) at the data point
x (the reconstruction likelihood); minus the KL divergence of the approximate posterior qφ(z|x) from the
latent prior pθ(z).

So maximizing the ELBO with respect to qφ(z|x) also has the regularizing effect of pushing the approxi-
mate posterior qφ(z|x) closer to the latent prior pθ(z), leading to a regularizing effect on the latent repre-
sentation. (This argument is not fully rigorous, because in the prior-contrastive expression, the choice of
qφ(z|x) affects also the first term.)

Some VAE implementations insert a weighting hyperparameter on the DKL term, to tune the relative
contributions of the reconstruction quality (measured by the term Eqφ(z|x)

[
log pθ(x|z)

]
) and the latent

regularization (which arises due to the DKL term). We recognize this as the classical weighting method
from multiobjective optimization. Lin et al. (2019) point out that the terms indeed represent conflicting
objectives.

Lin et al. (2019) also provide an interesting perspective here, on how to automatically find an optimal
balance between reconstruction quality and regularization. We will return to this point when we discuss
the choice of the observation model pθ(x|z) below.

6

4 Making the ELBO computable

Following Kingma and Welling (2013), we reparameterize the latent variable z, which follows the distri-
bution qφ(z|x), as a deterministic transformation of a new random variable ε:

z := g(ε, φ,x) (8)

In practice, the transformation is often defined in two parts. A typical g consists of a simple explicit
function, with parameters (that depend on the data x in a highly nonlinear manner) that are computed
by a neural network. We will see an example when we discuss the choice of the approximate posterior
qφ(z|x).

The variable ε is termed the noise variable. We choose the noise to follow a simple, non-parametric
distribution, such as a spherical Gaussian:

p(ε) := N (ε, 0,1) (9)

This is known as the reparameterization trick, and is a critically important detail for successful implemen-
tation of a VAE. The stochasticity of z is now isolated into the new non-parametric random variable ε.
The original variable z has become differentiable with respect to the parameters of our transformation g.
When used in neural networks (technically, directed graphical models), this allows backpropagation to
work across graph nodes involving z, while maintaining the stochastic nature of z. See Kingma and
Welling (2019, figure 2.3).

Using the reparameterization, we change variables in the expectation:

Eqφ(z|x)[f(z)] = Ep(ε)[f(z)] (10)

where f is any differentiable function. Note the integrand on the right-hand side is still written in terms
of the original variable z, so no jacobian determinant factor appears.

This change of variable brings the advantage that now the expectation itself no longer depends on the
parameters φ, so the gradient ∇φ and the expectation Ep(ε) commute. This in turn allows evaluating a
single-sample Monte Carlo estimate of the gradient as

∇φEqφ(z|x)[f(z)] = ∇φEp(ε)[f(z)]

= Ep(ε)[∇φf(z)]

' ∇φf(z) (11)

where the symbol 'means that one side (here the right-hand side) is an unbiased estimator of the other.
On the last line, z is evaluated by drawing one noise sample ε ∼ p(ε), and applying the current iterate
of the transformation g — so that in effect, z becomes drawn from the current approximate posterior
distribution qφ(z|x), as we indeed need for approximating the expectation in terms of this distribution.
These tricks make the estimate computable, as well as allow us to use stochastic gradient descent (SGD)
on the ELBO.

Similarly, a single-sample Monte Carlo estimate of the ELBO itself can be written as

Lθ,φ(x) ≡ Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)]

= Ep(ε)[log pθ(x, z)− log qφ(z|x)]

' log pθ(x, z)− log qφ(z|x) (12)

where we evaluate z by drawing one noise sample ε ∼ p(ε), and applying the current iterate of the
transformation g.

7

Thus to compute the ELBO, given a pair (x, z), we actually only need to evaluate the log-densities
log pθ(x, z) and log qφ(z|x). The joint log-density is usually further split into two terms, as on the an-
notated line of equation (7). The gradient of the ELBO with respect to θ and φ is then obtained by
backpropagation (backward mode automatic differentiation).

Keep in mind that the expectation that appears in the ELBO is Eqφ(z|x), so when evaluating the single-
sample Monte Carlo estimate of the ELBO, we must use a z sampled from qφ(z|x) in all terms — espe-
cially, also in the log-prior term pθ(z). That is, for this term, we evaluate the log-density that the prior
distribution pθ(z) assigns to the z sample drawn from the approximate posterior qφ(z|x).

5 The distributions pθ(z), pθ(x|z), and qφ(z|x)

To completely specify a VAE, we need to choose three distributions: a latent prior pθ(z), a class of obser-
vation models pθ(x|z), and a class of approximate posteriors qφ(z|x).

The latent prior pθ(z) can be taken to be some simple distribution with no parameters; this then imposes
a soft restriction on the codes the VAE can produce. (The subscript θ, indicating the decoder parameters,
then becomes superfluous, so we could write just p(z).)

The classic VAE by Kingma and Welling (2013) uses a spherical Gaussian latent space, which is still
perhaps the most popular latent space for VAEs:

pθ(z) := N (z; 0,1) (13)

Note this is distinct from the spherical Gaussian we used for the noise variable ε. Here we specify the
prior for the code points z, whereas p(ε) is just an auxiliary distribution used for reparameterizing the
approximate posterior qφ(z|x) to make it usable with optimization algorithms that use backpropagation.

The observation model in the classic VAE is a factorized Bernoulli:

log p(x|z) :=
D∑
j=1

log p(xj |z) (14)

where
p(xj |z) := Bernoulli(xj ; pj) ≡ p

xj
j + (1− pj)1−xj (15)

which yields the log-density

log p(xj |z) = xj log pj + (1− xj) log(1− pj) (16)

which is the form used in equation (1.18) in Kingma and Welling (2019). The latent variable z is mapped
to the Bernoulli parameter vector p by training a decoder neural network (NN), parameterized by the
decoder parameters θ:

p := NNθ(z) (17)

The neural network is where "the magic happens": it is the part of the VAE that actually establishes the
nonlinear mapping from the code space to the data space.

Many papers and VAE tutorials are based on this classic architecture. Note that the Bernoulli distribution
models the data as binary values {0, 1}, instead of a continuous variable in [0, 1]. The focus has shifted
after Loaiza-Ganem and Cunningham (2019) pointed out that for generic continuous data, this is simply
wrong, and that a much better VAE reconstruction (sharper images for the same dimension of latent
space) can be obtained by modifying the Bernoulli distribution into its continuous analogue. In practice,
this introduces a scaling factor so that the probability density integrates to 1 when x is continuous, and
changes the computation of the mean (it is no longer simply the Bernoulli parameter pj).

8

Other observation models are also possible. The variance of the observation model (decoded data) is
classically taken to be fixed — so the distribution of the observation model is only parameterized by
a learnable mean — but also models with learnable observation variance have been suggested. Here
particularly interesting is the factorized Gaussian observation model, with a global variance parameter
σ2, proposed by Lin et al. (2019):

log p(x|z) :=
D∑
j=1

log pθ(xj |z) (18)

where

pθ(xj |z) := N (xj ;µj , σ
2) ≡ 1√

2πσ
exp

(
− [xj − µj]2

2σ2

)
(19)

The parameter σ2 reflects the global noise properties of the data. The latent variable z is mapped to the
data-space parameter vector µ = µθ(z), representing the mean of each component in the data space (as
a highly nonlinear function of z), by training a decoder neural network, parameterized by the decoder
parameters θ:

µθ(z) := NNθ(z) (20)

The idea of automatic regularization tuning is to learn the value of σ (starting from an initial value of
1) as part of the ELBO optimization. The authors also provide a closed-form solution for the optimal σ∗
when θ and φ are fixed. The final learned σ represents the optimal amount of noise that we must assume
the data to have to make our best-fit model fit the data; it thus also measures the quality of the fit.

The variance parameter can also be made local (like the mean µ already is), which yields even better
results as well as a local uncertainty indicator. However, then some care needs to be taken in designing
the training algorithm; for details, see the original study by Lin et al. (2019).

Finally, we need to specify the family of distributions we would like to use as the approximate posterior
qφ(z|x). Note that this describes the distribution of code points in the latent space.

Keep in mind that in the posterior, we have reparameterized z = g(ε, φ,x), so we may start from the
noise log-density log p(ε), and transform that via g. Recall that in equation (9), we chose the noise
variable ε to follow the unit spherical Gaussian distribution,

p(ε) ≡ N (ε, 0,1)

whereas in the ELBO evaluation, the latent variable z follows the approximate posterior qφ(z|x).

Following Kingma and Welling (2019), for a given transformation z = g(ε, φ,x), the log-densities log p(ε)
and log qφ(z|x) are related by the change of variable in a probability density (which is a relative of the
change of variable in an integral):

log qφ(z|x) = log p(ε)− log dφ(x, ε) (21)

where

log dφ(x, ε) = log

∣∣∣∣det
∂z

∂ε

∣∣∣∣ (22)

and ∂z/∂ε is the jacobian matrix of the transformation g:[
∂z

∂ε

]
ik

≡ ∂zi
∂εk

(23)

Note that in equation (21), we have rewritten the right-hand side in terms of ε instead of z, hence a
jacobian determinant term appears. We use the notation dφ(x, ε) to emphasize that this quantity depends
not only on ε, but also on the data x and the encoder parameters φ.

9

Now it remains to choose a suitable transformation g. Doing so will specify the family of approximate
posteriors available for use by the VAE. Informally, it is advantageous to choose something flexible (to
be able to reasonably approximate an arbitrary unknown true posterior pθ(z|x)), yet having a simple
log-determinant log dφ(x, ε). The latter consideration is for simplicity and computational efficiency, since
during optimization, we will need to evaluate the single-datapoint ELBO estimate in the innermost loop.

The classic VAE uses, for simplicity, a factorized Gaussian approximate posterior:

qφ(z|x) :=
∏
i

qφ(zi|x) :=
∏
i

N (zi;µi, σ
2
i) (24)

How does this fit into the transformation framework? We can parameterize the factorized Gaussian
by its mean and log-variance vectors µ and logσ. The data points x are mapped to the parameters of
the approximate posterior by training an encoder neural network (NN), parameterized by the encoder
parameters φ:

(µ, logσ) := NNφ(x) (25)

Now we can write the transformation (this is the simple explicit function part)

z := µ+ σ � ε (26)

where� denotes the elementwise product. In other words, we take the noise distributionN (ε; 0,1), and
shift and scale each vector component j such that the resulting vector z follows a factorized Gaussian
distribution. When evaluating the ELBO during neural network optimization, we draw a noise sample ε,
and then apply (26) to obtain a z drawn from the current iterate of qφ(z|x).

Equations (25) and (26) together form a concrete example of the transformation z = g(ε, φ,x). In (26),
the dependences of z on φ and x have been absorbed into µ = µφ(x) and σ = σφ(x), via the neural
network NNφ(x).

Again, the neural network is where "the magic happens": it is the part of the VAE that actually establishes
the nonlinear mapping from the data space to the code space.

With the choice (26), the jacobian of the transformation g is just

∂z

∂ε
= diag(σ) ≡

σ1

σ2

. . .
σN

 (27)

so the log-determinant is found to be

log dφ(x, ε) = log

∣∣∣∣det
∂z

∂ε

∣∣∣∣ =
∑
i

log σi (28)

where we have dropped the absolute value since the standard deviations σi are nonnegative. The ap-
proximate posterior log-density becomes

log qφ(z|x) = log p(ε)− log dφ(x, ε) =
∑
i

[
logN (εi; 0, 1)− log σi

]
(29)

This is then evaluated using the same single noise sample ε as above for evaluating z.

For more details, see Kingma and Welling (2019, sec. 2.4 and 2.5, and algorithm 2).

10

6 ELBO and Bayes’ theorem

Starting from the tautology
pθ(x, z) = pθ(x, z) (30)

we rewrite both sides, splitting the joint probability both ways:

pθ(z|x)pθ(x) = pθ(x|z)pθ(z) (31)

Rearranging yields Bayes’ theorem in its standard form — i.e. how to update our beliefs on the latent z
when new data x arrives:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
(32)

However, in evaluating the ELBO loss, this is used in the rearranged form

pθ(x) =
pθ(x|z)pθ(z)

pθ(z|x)
(33)

to evaluate the marginal likelihood of the model θ, given the other three distributions.2 Now, let us take
the logarithm of (33), and then marginalize out z on the right-hand side by taking an expectation over
z ∼ pθ(z|x) on both sides. We have

log pθ(x) = Epθ(z|x)

[
log pθ(z) + log pθ(x|z)− log pθ(z|x)

]
(34)

Compare to the annotated line of equation (7), repeated here for convenience:

Lθ,φ(x) = Eqφ(z|x)

[
log pθ(z) + log pθ(x|z)− log qφ(z|x)

]
(35)

Since the true posterior pθ(z|x) is intractable, we approximate it variationally by qφ(z|x). Note also the
expectation is now taken over z ∼ qφ(z|x), no longer z ∼ pθ(z|x). As was shown by algebraic manipu-
lation (equation (6)), Lθ,φ(x) is a variational lower bound for pθ(x), so maximizing this expression over
qφ(z|x) yields the maximal lower bound for pθ(x) within the chosen family of posteriors qφ(z|x).

We emphasize that just like when choosing a finite element basis, we must choose a family qφ(z|x) that
can reasonably represent an approximation of the unknown pθ(z|x); otherwise the obtained lower bound
may be useless. A classical numericist observes here that the ELBO optimality guarantee is similar to the
residual L2 orthogonality guarantee of Galerkin methods, in that the result can only be as good as the
chosen basis is at representing a useful approximation of the unknown quantity.

2This form looks slightly suspect in that the left-hand side depends only on x, whereas the right-hand side depends on both
x and z. This suggests that the z dependences on the right-hand side must cancel out; but to do this rigorously, it is better to
start from (31), apply the logarithm and the expectation over z, and rearrange only after that has been done.

11

7 ELBO loss evaluation

A VAE is trained by minimizing the total ELBO loss (i.e. maximizing the total ELBO) over the dataset D.
We now look at the inner loop that evaluates the ELBO loss for a single data point x ∈ D.

To evaluate the ELBO, we use the annotated line of equation (7). One final detail is that since the ELBO
loss evaluation must run in the inner loop, we cannot use any expensive methods to evaluate the expec-
tation over z ∼ qφ(z|x). So we do this approximately, with a single-sample Monte Carlo estimate; we
have everything we need to draw a sample from the current iterate of the approximate posterior qφ(z|x).

The algorithm is as follows:

• Input: data point x.

• Encode: compute NNφ(x), obtain parameters for reparameterization transformation g.

• Draw one noise sample ε (e.g. from distribution (9)).

• Plugging the parameters into g, transform the noise sample to obtain one z drawn from qφ(z|x).

• Using this z sample, compute a single-sample MC estimate of the ELBO:

– Evaluate approximate posterior log-density log qφ(z|x) at this z (e.g. equation (29)).

– Evaluate latent prior log-density log pθ(z) at this z (e.g. based on equation (13)).

– Decode: compute NNθ(z), obtain parameters for observation model.

– Using these parameters, evaluate observation log-density log pθ(x|z) at the input x.

• Combine the three log-densities to obtain the ELBO estimate (see equation (7)).

• Output: ELBO loss (negative of the ELBO).

We evaluate log pθ(x|z) at the input x for two reasons: our z drawn from qφ(z|x) was conditioned on this
value of x, and this is the x value for which we are computing the single-datapoint estimate of Lθ,φ(x).

The encode-decode cycle used in autoencoder (AE) training is still there, but it is now somewhat hidden
under the various details. In a VAE, instead of directly producing a point in the other space (latent or
data), the neural network parts produce parameters for a parametric distribution. Also in a VAE, the op-
timization objective is no longer a simple mean-square reconstruction error, but rather the approximate
model evidence (i.e. the marginal likelihood of model θ under the dataset D).

Compare the loss evaluation of a classical (non-variational) autoencoder (AE):

• Input: data point x

• Encode: z = NNφ(x)

• Decode: x̂ = NNθ(z)

• Compute mean-square reconstruction error: MSE := ‖x̂− x‖2

• Output: MSE

A classical AE uses a low-dimensional latent representation just like a VAE does, but the AE has no
constraints on the regularity of the latent representation. Hence it is free to overfit in order to minimize
the MSE on the training dataset.

12

8 Concluding notes

What the added complexity of a VAE buys us is that the latent representation z is continuous, so we can
interpolate and extrapolate in the latent space. A continuous latent representation is much more useful.

The classical application are generative models. A VAE decoder can be used as a standalone generative
model to produce new data statistically similar to the training inputs. This has applications in computer-
generated visual art.

Exploring the latent space visually may allow a researcher to discover what the automatically extracted
features represent. For datasets where the relevant features are not clear to a human a priori, this may lead
to interesting insights, or may at least serve as a catalyst for thinking that may produce such insights.

A particularly interesting application of VAEs is in computational science, where they hold promise
for acceleration of physical simulations. Because the latent representation is continuous, it should be
possible to use it as a reduced order model for a dynamic simulation based on a partial differential
equation model, by training another neural network to act as a time-evolution operator on the VAE-
coded latent space. In a continuous coded representation, time evolution over a short timestep ∆t should
correspond to a short move in the latent space, which should be learnable.

Several groups at the ECCOMAS 2022 conference indeed reported successfully using autoencoders (of-
ten based on a ResNet architecture) for model order reduction. However, at this writing, this particular
variant of the idea remains to be tested.

Finally, summary of some important points:

• For the low-dimensional latent space where the code points z live, we choose an arbitrary prior
distribution pθ(z), with no parameters. This is a soft constraint, specifying how we expect the
codes to look like, before seeing any data.

• The distribution family used for the inference model (i.e. approximate posterior) qφ(z|x) constrains
how the VAE can update its belief of the codes, conditioned on the data x.

– The result of the encoding a data point x is a distribution of plausible code points that could
correspond to that data point.

– The ELBO optimization will actually push the approximate posterior qφ(z|x) toward the prior
pθ(z).

• The distribution family used for the observation model pθ(x|z) reflects the distribution we expect
the data to follow. Given a code point z, it constrains how the corresponding decoded data can
look like.

– True to the stochastic nature of the VAE, when given a code point z, the decoder (observation
model) in fact yields a distribution of plausible data points that could have generated that
code point. It is customary to return the mean of this distribution as the decoded x, but one
could also draw a sample, or return the distribution itself.

• The mapping between the data and code spaces is not explicitly specified.

– This mapping — in the form of parameters for pre-chosen families of probability distributions
pθ(x|z) and qφ(z|x) — is discovered by the neural networks NNθ(z) and NNφ(x), by jointly
training them against the dataset D via the ELBO loss. This neural network optimization,
together with the low-dimensional bottleneck, causes the latent space — which we forced in
itself to have a simple structure — to become a representation for features discovered from
the data. The "magic" is in the neural networks.

13

9 References

Diederik P Kingma, Max Welling. 2013 (revised 2022). Auto-Encoding Variational Bayes. https://
arxiv.org/abs/1312.6114

Diederik P Kingma, Max Welling. 2019. An Introduction to Variational Autoencoders. https://
arxiv.org/abs/1906.02691

Gabriel Loaiza-Ganem, John P. Cunningham. 2019. The continuous Bernoulli: fixing a pervasive error
in variational autoencoders. https://arxiv.org/abs/1907.06845

Shuyu Lin, Stephen Roberts, Niki Trigoni, Ronald Clark. 2019. Balancing Reconstruction Quality and
Regularisation in ELBO for VAEs. https://arxiv.org/abs/1909.03765

14

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1906.02691
https://arxiv.org/abs/1906.02691
https://arxiv.org/abs/1907.06845
https://arxiv.org/abs/1909.03765

10 Online resources for further reading

Clicky clicky. Currently a link dump without much regard to formatting; may organize later.

Also the cited papers are highly recommended, for providing important ideas in a clearly written form
that is easy to follow.

VAE-related
https://www.deeplearningbook.org/contents/generative_models.html (the Deep Learn-
ing book by Goodfellow et al. (2016) includes a section on VAEs)
https://danijar.com/building-variational-auto-encoders-in-tensorflow/
https://www.cs.toronto.edu/~frossard/post/vgg16/ (excellent network structure diagram)
https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/content/3.
10_variational_autoencoder.html
https://linux-blog.anracom.com/2022/10/06/variational-autoencoder-with-tensorflow-2-8-x-vae-application-to-celeba-images/
https://linux-blog.anracom.com/2022/10/22/variational-autoencoder-with-tensorflow-2-8-xi-image-creation-by-a-vae-trained-on-celeba/
https://linux-blog.anracom.com/2022/11/07/variational-autoencoder-with-tensorflow-2-8-xiii-does-a-vae-with-tiny-kl-loss-behave-like-an-ae-and-if-so-why/
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://learnopencv.com/autoencoder-in-tensorflow-2-beginners-guide/
https://learnopencv.com/variational-autoencoder-in-tensorflow/
https://www.inference.vc/choice-of-recognition-models-in-vaes-a-regularisation-view/
https://www.inference.vc/variational-inference-using-implicit-models/
https://www.inference.vc/how-to-train-your-generative-models-why-generative-adversarial-networks-work-so-well-2/

Basic concepts
https://www.baeldung.com/cs/k-fold-cross-validation
https://machinelearningmastery.com/difference-test-validation-datasets/
https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
https://www.quora.com/What-is-the-difference-between-skip-peephole-and-residual-connections-in-neural-networks
https://andrewcharlesjones.github.io/journal/convergence.html (convergence in prob-
ability vs. almost sure conv.)
https://github.com/y0ast/VAE-TensorFlow/issues/3 (why Bernoulli distribution in VAE de-
coder)
https://mbernste.github.io/posts/elbo/

Backpropagation (i.e. backward-mode automatic differentiation for neural networks)
https://cs231n.github.io/optimization-1/#gd
https://cs231n.github.io/neural-networks-case-study/#grad
https://dustinstansbury.github.io/theclevermachine/derivation-backpropagation
https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b

Various AI/NN tutorials
https://dennybritz.com/posts/wildml/implementing-a-neural-network-from-scratch/
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-4/
https://mkffl.github.io/2019/07/08/minimalist-RNN.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://kvfrans.com/variational-autoencoders-explained/

15

https://www.deeplearningbook.org/contents/generative_models.html
https://danijar.com/building-variational-auto-encoders-in-tensorflow/
https://www.cs.toronto.edu/~frossard/post/vgg16/
https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/content/3.10_variational_autoencoder.html
https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/content/3.10_variational_autoencoder.html
https://linux-blog.anracom.com/2022/10/06/variational-autoencoder-with-tensorflow-2-8-x-vae-application-to-celeba-images/
https://linux-blog.anracom.com/2022/10/22/variational-autoencoder-with-tensorflow-2-8-xi-image-creation-by-a-vae-trained-on-celeba/
https://linux-blog.anracom.com/2022/11/07/variational-autoencoder-with-tensorflow-2-8-xiii-does-a-vae-with-tiny-kl-loss-behave-like-an-ae-and-if-so-why/
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
https://towardsdatascience.com/bayesian-inference-problem-mcmc-and-variational-inference-25a8aa9bce29
https://learnopencv.com/autoencoder-in-tensorflow-2-beginners-guide/
https://learnopencv.com/variational-autoencoder-in-tensorflow/
https://www.inference.vc/choice-of-recognition-models-in-vaes-a-regularisation-view/
https://www.inference.vc/variational-inference-using-implicit-models/
https://www.inference.vc/how-to-train-your-generative-models-why-generative-adversarial-networks-work-so-well-2/
https://www.baeldung.com/cs/k-fold-cross-validation
https://machinelearningmastery.com/difference-test-validation-datasets/
https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
https://www.quora.com/What-is-the-difference-between-skip-peephole-and-residual-connections-in-neural-networks
https://andrewcharlesjones.github.io/journal/convergence.html
https://github.com/y0ast/VAE-TensorFlow/issues/3
https://mbernste.github.io/posts/elbo/
https://cs231n.github.io/optimization-1/#gd
https://cs231n.github.io/neural-networks-case-study/#grad
https://dustinstansbury.github.io/theclevermachine/derivation-backpropagation
https://karpathy.medium.com/yes-you-should-understand-backprop-e2f06eab496b
https://dennybritz.com/posts/wildml/implementing-a-neural-network-from-scratch/
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-4/
https://mkffl.github.io/2019/07/08/minimalist-RNN.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://kvfrans.com/variational-autoencoders-explained/

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://spinningup.openai.com/en/latest/user/introduction.html (reinforcement learn-
ing tutorial)
https://neptune.ai/blog/reinforcement-learning-agents-training-debug (how to de-
bug RL)

Series on high-resolution image generation from examples
https://blog.otoro.net/2016/03/25/generating-abstract-patterns-with-tensorflow/
(CPPN)
https://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/
(VAE + GAN)
https://blog.otoro.net/2016/06/02/generating-large-images-from-latent-vectors-part-two/
(condition to diversify)

Wikipedia
https://en.wikipedia.org/wiki/Training%2C_validation%2C_and_test_data_sets
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Logit
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Continuous_Bernoulli_distribution (new, 2019!)
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/Residual_neural_network (skip-connections)
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Compositional_pattern-producing_network (how to teach
AI abstract visual art)
https://en.wikipedia.org/wiki/Neuroevolution

Web demos
https://laion.ai/blog/laion-5b/
https://stablediffusionweb.com/
https://prostheticknowledge.tumblr.com/post/136696656421/dcgan-face-generator-online-image-generator-can
https://qiita.com/mattya/items/e5bfe5e04b9d2f0bbd47 (Chainer - generate anime portraits
via GAN)

Code examples
https://blog.fastforwardlabs.com/2016/02/24/hello-world-in-keras-or-scikit-learn-versus-keras.
html
https://keras.io/examples/generative/vae/
https://www.tensorflow.org/tutorials/generative/autoencoder
https://www.tensorflow.org/tutorials/generative/cvae
https://github.com/ChengBinJin/VAE-Tensorflow/tree/master/src
https://github.com/cunningham-lab/cb_and_cc/blob/master/cb/norm_vae_mnist.ipynb
https://github.com/cunningham-lab/cb_and_cc/blob/master/cb/utils.py (the original
continuous Bernoulli implementation)
https://github.com/farrell236/ResNetAE/blob/master/ResNetAE.py
https://github.com/openai/improved-gan
https://github.com/wxs/keras-mnist-tutorial/blob/master/MNIST%20in%20Keras.ipynb
https://www.tensorflow.org/guide/keras/custom_layers_and_models#putting_it_all_

16

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://spinningup.openai.com/en/latest/user/introduction.html
https://neptune.ai/blog/reinforcement-learning-agents-training-debug
https://blog.otoro.net/2016/03/25/generating-abstract-patterns-with-tensorflow/
https://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/
https://blog.otoro.net/2016/06/02/generating-large-images-from-latent-vectors-part-two/
https://en.wikipedia.org/wiki/Training%2C_validation%2C_and_test_data_sets
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Logit
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Continuous_Bernoulli_distribution
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/Residual_neural_network
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Compositional_pattern-producing_network
https://en.wikipedia.org/wiki/Neuroevolution
https://laion.ai/blog/laion-5b/
https://stablediffusionweb.com/
https://prostheticknowledge.tumblr.com/post/136696656421/dcgan-face-generator-online-image-generator-can
https://qiita.com/mattya/items/e5bfe5e04b9d2f0bbd47
https://blog.fastforwardlabs.com/2016/02/24/hello-world-in-keras-or-scikit-learn-versus-keras.html
https://blog.fastforwardlabs.com/2016/02/24/hello-world-in-keras-or-scikit-learn-versus-keras.html
https://keras.io/examples/generative/vae/
https://www.tensorflow.org/tutorials/generative/autoencoder
https://www.tensorflow.org/tutorials/generative/cvae
https://github.com/ChengBinJin/VAE-Tensorflow/tree/master/src
https://github.com/cunningham-lab/cb_and_cc/blob/master/cb/norm_vae_mnist.ipynb
https://github.com/cunningham-lab/cb_and_cc/blob/master/cb/utils.py
https://github.com/farrell236/ResNetAE/blob/master/ResNetAE.py
https://github.com/openai/improved-gan
https://github.com/wxs/keras-mnist-tutorial/blob/master/MNIST%20in%20Keras.ipynb
https://www.tensorflow.org/guide/keras/custom_layers_and_models#putting_it_all_together_an_end-to-end_example
https://www.tensorflow.org/guide/keras/custom_layers_and_models#putting_it_all_together_an_end-to-end_example

together_an_end-to-end_example
https://www.nltk.org/
https://github.com/pietrobarbiero/pytorch_explain
https://github.com/kvfrans/variational-autoencoder
https://jmetzen.github.io/2015-11-27/vae.html

API docs
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
https://simplegan.readthedocs.io/en/latest/modules/autoencoder.html
https://keras.io/api/layers/convolution_layers/convolution2d/
https://keras.io/api/layers/convolution_layers/convolution2d_transpose/
https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html

Various blog posts
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://gist.github.com/karpathy/d4dee566867f8291f086 (code for above; minimal character-
level RNN in NumPy)
https://towardsdatascience.com/classification-model-for-source-code-programming-languages-40d1ab7243c2

Various AI-related code snippets
https://github.com/stratospark/keras-multiprocess-image-data-generator
https://github.com/bckenstler/CLR (cyclical learning rate plugin for Keras)

17

https://www.tensorflow.org/guide/keras/custom_layers_and_models#putting_it_all_together_an_end-to-end_example
https://www.tensorflow.org/guide/keras/custom_layers_and_models#putting_it_all_together_an_end-to-end_example
https://www.nltk.org/
https://github.com/pietrobarbiero/pytorch_explain
https://github.com/kvfrans/variational-autoencoder
https://jmetzen.github.io/2015-11-27/vae.html
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
https://simplegan.readthedocs.io/en/latest/modules/autoencoder.html
https://keras.io/api/layers/convolution_layers/convolution2d/
https://keras.io/api/layers/convolution_layers/convolution2d_transpose/
https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://gist.github.com/karpathy/d4dee566867f8291f086
https://towardsdatascience.com/classification-model-for-source-code-programming-languages-40d1ab7243c2
https://github.com/stratospark/keras-multiprocess-image-data-generator
https://github.com/bckenstler/CLR

	Introduction
	Problem setup and the proposed solution
	The evidence lower bound (ELBO)
	Making the ELBO computable
	The distributions p(z), p(x z), and q(z x)
	ELBO and Bayes' theorem
	ELBO loss evaluation
	Concluding notes
	References
	Online resources for further reading

